Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zbyszek Otwinowski is active.

Publication


Featured researches published by Zbyszek Otwinowski.


Methods in Enzymology | 1997

Processing of X-ray diffraction data collected in oscillation mode

Zbyszek Otwinowski; Wladek Minor

Publisher Summary X-ray data can be collected with zero-, one-, and two-dimensional detectors, zero-dimensional (single counter) being the simplest and two-dimensional the most efficient in terms of measuring diffracted X-rays in all directions. To analyze the single-crystal diffraction data collected with these detectors, several computer programs have been developed. Two-dimensional detectors and related software are now predominantly used to measure and integrate diffraction from single crystals of biological macromolecules. Macromolecular crystallography is an iterative process. To monitor the progress, the HKL package provides two tools: (1) statistics, both weighted (χ 2 ) and unweighted (R-merge), where the Bayesian reasoning and multicomponent error model helps obtain proper error estimates and (2) visualization of the process, which helps an operator to confirm that the process of data reduction, including the resulting statistics, is correct and allows the evaluation of the problems for which there are no good statistical criteria. Visualization also provides confidence that the point of diminishing returns in data collection and reduction has been reached. At that point, the effort should be directed to solving the structure. The methods presented in the chapter have been applied to solve a large variety of problems, from inorganic molecules with 5 A unit cell to rotavirus of 700 A diameters crystallized in 700 × 1000 × 1400 A cell.


Acta Crystallographica Section D-biological Crystallography | 2006

HKL-3000: the integration of data reduction and structure solution – from diffraction images to an initial model in minutes

Wladek Minor; Marcin Cymborowski; Zbyszek Otwinowski; Maksymilian Chruszcz

A new approach that integrates data collection, data reduction, phasing and model building significantly accelerates the process of structure determination and on average minimizes the number of data sets and synchrotron time required for structure solution. Initial testing of the HKL-3000 system (the beta version was named HKL-2000_ph) with more than 140 novel structure determinations has proven its high value for MAD/SAD experiments. The heuristics for choosing the best computational strategy at different data resolution limits of phasing signal and crystal diffraction are being optimized. The typical end result is an interpretable electron-density map with a partially built structure and, in some cases, an almost complete refined model. The current development is oriented towards very fast structure solution in order to provide feedback during the diffraction experiment. Work is also proceeding towards improving the quality of phasing calculation and model building.


Science | 1990

Interfacial catalysis: the mechanism of phospholipase A2

David Scott; Steven P. White; Zbyszek Otwinowski; Wei Yuan; Michael H. Gelb; Paul B. Sigler

A chemical description of the action of phospholipase A2 (PLA2) can now be inferred with confidence from three high-resolution x-ray crystal structures. The first is the structure of the PLA2 from the venom of the Chinese cobra (Naja naja atra) in a complex with a phosphonate transition-state analogue. This enzyme is typical of a large, well-studied homologous family of PLA2S. The second is a similar complex with the evolutionarily distant bee-venom PLA2. The third structure is the uninhibited PLA2 from Chinese cobra venom. Despite the different molecular architectures of the cobra and bee-venom PLA2s, the transition-state analogue interacts in a nearly identical way with the catalytic machinery of both enzymes. The disposition of the fatty-acid side chains suggests a common access route of the substrate from its position in the lipid aggregate to its productive interaction with the active site. Comparison of the cobra-venom complex with the uninhibited enzyme indicates that optimal binding and catalysis at the lipid-water interface is due to facilitated substrate diffusion from the interfacial binding surface to the catalytic site rather than an allosteric change in the enzymes structure. However, a second bound calcium ion changes its position upon the binding of the transition-state analogue, suggesting a mechanism for augmenting the critical electrophile.


Acta Crystallographica Section A | 2003

Multiparametric scaling of diffraction intensities

Zbyszek Otwinowski; Dominika Borek; Wladyslaw Majewski; Wladek Minor

A novel and general approach to scaling diffraction intensities is presented. The method minimizes the disagreement among multiple measurements of symmetry-related reflections using a stable refinement procedure. The scale factors are described by a flexible exponential function that allows different scaling corrections to be chosen and combined according to the needs of the experiment. The scaling model presented here includes: scale and temperature factor per batch of data; temperature factor as a continuous function of the radiation dose; absorption in the crystal; uneven exposure within a single diffraction image; and corrections for phenomena that depend on the diffraction peak position on the detector. This scaling model can be extended to include additional corrections for various instrumental and data-collection problems.


Science | 1990

Crystal structure of bee-venom phospholipase A2 in a complex with a transition-state analogue

David Scott; Zbyszek Otwinowski; Michael H. Gelb; Paul B. Sigler

The 2.0 angstroms crystal structure of a complex containing bee-venom phospholipase A2 (PLA2) and a phosphonate transition-state analogue was solved by multiple isomorphous replacement. The electron-density map is sufficiently detailed to visualize the proximal sugars of the enzymes N-linked carbohydrate and a single molecule of the transition-state analogue bound ot its active center. Although bee-venom PLA2 does not belong to the large homologous Class I/II family that encompasses most other well-studied PLA2s, there is segmental sequence similarity and conservation of many functional substructures. Comparison of the bee-venom enzyme with other phospholipase structures provides compelling evidence for a common catalytic mechanism.


Structure | 2011

A New Generation of Crystallographic Validation Tools for the Protein Data Bank

Randy J. Read; Paul D. Adams; W. Bryan Arendall; Axel T. Brunger; Paul Emsley; Robbie P. Joosten; Gerard J. Kleywegt; Eugene Krissinel; Thomas Lütteke; Zbyszek Otwinowski; Anastassis Perrakis; Jane S. Richardson; William Sheffler; Janet L. Smith; Ian J. Tickle; Gert Vriend; Peter H. Zwart

Summary This report presents the conclusions of the X-ray Validation Task Force of the worldwide Protein Data Bank (PDB). The PDB has expanded massively since current criteria for validation of deposited structures were adopted, allowing a much more sophisticated understanding of all the components of macromolecular crystals. The size of the PDB creates new opportunities to validate structures by comparison with the existing database, and the now-mandatory deposition of structure factors creates new opportunities to validate the underlying diffraction data. These developments highlighted the need for a new assessment of validation criteria. The Task Force recommends that a small set of validation data be presented in an easily understood format, relative to both the full PDB and the applicable resolution class, with greater detail available to interested users. Most importantly, we recommend that referees and editors judging the quality of structural experiments have access to a concise summary of well-established quality indicators.


Nature | 2010

Structure and control of the actin regulatory WAVE complex.

Zhucheng Chen; Dominika Borek; Shae B. Padrick; Timothy S. Gomez; Zoltan Metlagel; Ayman M. Ismail; Junko Umetani; Daniel D. Billadeau; Zbyszek Otwinowski; Michael K. Rosen

Members of the Wiskott–Aldrich syndrome protein (WASP) family control cytoskeletal dynamics by promoting actin filament nucleation with the Arp2/3 complex. The WASP relative WAVE regulates lamellipodia formation within a 400-kilodalton, hetero-pentameric WAVE regulatory complex (WRC). The WRC is inactive towards the Arp2/3 complex, but can be stimulated by the Rac GTPase, kinases and phosphatidylinositols. Here we report the 2.3-ångstrom crystal structure of the WRC and complementary mechanistic analyses. The structure shows that the activity-bearing VCA motif of WAVE is sequestered by a combination of intramolecular and intermolecular contacts within the WRC. Rac and kinases appear to destabilize a WRC element that is necessary for VCA sequestration, suggesting the way in which these signals stimulate WRC activity towards the Arp2/3 complex. The spatial proximity of the Rac binding site and the large basic surface of the WRC suggests how the GTPase and phospholipids could cooperatively recruit the complex to membranes.


Nature Structural & Molecular Biology | 1996

The 2.4 Å crystal structure of the bacterial chaperonin GroEL complexed with ATPγS

David C. Boisvert; Jimin Wang; Zbyszek Otwinowski; Arthur L. Horwich; Paul B. Sigler

GroEL is a bacterial chaperonin of 14 identical subunits required to help fold newly synthesized proteins. The crystal structure of GroEL with ATPγS bound to each subunit shows that ATP binds to a novel pocket, whose primary sequence is highly conserved among chaperonins. Interaction of Mg2+ and ATP involves phosphate oxygens of the α-, β- and γ-phosphates, which is unique for known structures of nucleotide-binding proteins. Although bound ATP induces modest conformational shifts in the equatorial domain, the stereochemistry that functionally coordinates GroELs affinity for nucleotides, polypeptide, and GroES remains uncertain.


Structure | 2009

Secondary structure of Huntingtin amino-terminal region.

Meewhi Kim; Yogarany Chelliah; Sang Woo Kim; Zbyszek Otwinowski; Ilya Bezprozvanny

Huntingtons disease is a genetic neurodegenerative disorder resulting from polyglutamine (polyQ) expansion (>36Q) within the first exon of Huntingtin (Htt) protein. We applied X-ray crystallography to determine the secondary structure of the first exon (EX1) of Htt17Q. The structure of Htt17Q-EX1 consists of an amino-terminal alpha helix, poly17Q region, and polyproline helix formed by the proline-rich region. The poly17Q region adopts multiple conformations in the structure, including alpha helix, random coil, and extended loop. The conformation of the poly17Q region is influenced by the conformation of neighboring protein regions, demonstrating the importance of the native protein context. We propose that the conformational flexibility of the polyQ region observed in our structure is a common characteristic of many amyloidogenic proteins. We further propose that the pathogenic polyQ expansion in the Htt protein increases the length of the random coil, which promotes aggregation and facilitates abnormal interactions with other proteins in cells.


Proceedings of the National Academy of Sciences of the United States of America | 2005

From nonpeptide toward noncarbon protease inhibitors: Metallacarboranes as specific and potent inhibitors of HIV protease

Petr Cígler; Milan Kožíšek; Pavlína Řezáčová; Jiří Brynda; Zbyszek Otwinowski; Jana Pokorná; Jaromír Plešek; Bohumír Grüner; Lucie Dolečková-Marešová; Martin Máša; Juraj Sedláček; Jochen Bodem; Hans-Georg Kräusslich; Vladimír Král; Jan Konvalinka

HIV protease (PR) represents a prime target for rational drug design, and protease inhibitors (PI) are powerful antiviral drugs. Most of the current PIs are pseudopeptide compounds with limited bioavailability and stability, and their use is compromised by high costs, side effects, and development of resistant strains. In our search for novel PI structures, we have identified a group of inorganic compounds, icosahedral metallacarboranes, as candidates for a novel class of nonpeptidic PIs. Here, we report the potent, specific, and selective competitive inhibition of HIV PR by substituted metallacarboranes. The most active compound, sodium hydrogen butylimino bis-8,8-[5-(3-oxa-pentoxy)-3-cobalt bis(1,2-dicarbollide)]di-ate, exhibited a Ki value of 2.2 nM and a submicromolar EC50 in antiviral tests, showed no toxicity in tissue culture, weakly inhibited human cathepsin D and pepsin, and was inactive against trypsin, papain, and amylase. The structure of the parent cobalt bis(1,2-dicarbollide) in complex with HIV PR was determined at 2.15 Å resolution by protein crystallography and represents the first carborane-protein complex structure determined. It shows the following mode of PR inhibition: two molecules of the parent compound bind to the hydrophobic pockets in the flap-proximal region of the S3 and S3′ subsites of PR. We suggest, therefore, that these compounds block flap closure in addition to filling the corresponding binding pockets as conventional PIs. This type of binding and inhibition, chemical and biological stability, low toxicity, and the possibility to introduce various modifications make boron clusters attractive pharmacophores for potent and specific enzyme inhibition.

Collaboration


Dive into the Zbyszek Otwinowski's collaboration.

Top Co-Authors

Avatar

Dominika Borek

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrzej Joachimiak

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrzej Kudlicki

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nick V. Grishin

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Maksymilian Chruszcz

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Małgorzata Rowicka

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Maga Rowicka

University of Texas Medical Branch

View shared research outputs
Researchain Logo
Decentralizing Knowledge