Márcio R. Miranda
Federal University of Rio de Janeiro
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Márcio R. Miranda.
Environmental Research | 2012
Raquel Rose Silva Correia; Márcio R. Miranda; Jean Remy Davée Guimarães
Macrophyte-associated periphyton is known as a site of Hg accumulation and methylation in tropical environments. Sulfate-reducing bacteria (SRB) is found in periphyton and its role in Hg methylation is acknowledged. However, the contribution of other microorganisms to this process is largely unknown. We tested the effect of inhibitors for different microorganisms on methylmercury (MMHg) formation on distinct macrophyte species from lakes of the Bolivian Amazon basin and in Brazil. We also tested the effect of inhibitors on bacterial secondary activity at two lakes in Brazil. Samples were incubated on-site with (203)Hg and Me(203)Hg was extracted and measured by liquid scintillation. MMHg formation on macrophytes varied among species ranging from 0.2% to 36%. Treatments with specific inhibitors resulted in reduction of MMHg production on most sites and inhibitors. The most successful treatment was the co-inhibition of SRB and methanogens. The inhibitions of algae and fungi activity showed fewer effects on methylation rates at all sites analyzed. Bacterial secondary activity was slightly affected by algae and fungi inhibition, and largely influenced by prokaryotic, SRB and methanogens inhibition. The data suggest that MMHg formation may not be directly performed by all microorganisms in periphyton but depends on complex interactions among them.
Science of The Total Environment | 2011
Jean Remy Davée Guimarães; Oscar Betancourt; Márcio R. Miranda; Ramiro Barriga; Edwin Cueva; Sebastián Betancourt
Small-scale gold mining in Portovelo-Zaruma, Southern Equador, performed by mercury amalgamation and cyanidation, yields 9-10 t of gold/annum, resulting in annual releases of around 0.65 t of inorganic mercury and 6000 t of sodium cyanide in the local river system. The release of sediments, cyanide, mercury, and other metals present in the ore such as lead, manganese and arsenic significantly reduces biodiversity downstream the processing plants and enriches metals in bottom sediments and biota. However, methylmercury concentrations in sediments downstream the mining area were recently found to be one order of magnitude lower than upstream or in small tributaries. In this study we investigated cyanide, bacterial activity in water and sediment and mercury methylation potentials in sediments along the Puyango river watershed, measured respectively by in-situ spectrophotometry and incubation with (3)H-leucine and (203)Hg(2+). Free cyanide was undetectable (<1 μg·L(-1)) upstream mining activities, reached 280 μg·L(-1) a few km downstream the processing plants area and was still detectable about 100 km downstream. At stations with detectable free cyanide in unfiltered water, 50% of it was dissolved and 50% associated to suspended particles. Bacterial activity and mercury methylation in sediment showed a similar spatial pattern, inverse to the one found for free cyanide in water, i.e. with significant values in pristine upstream sampling points (respectively 6.4 to 22 μgC·mg wet weight(-1)·h(-1) and 1.2 to 19% of total (203) Hg·gdry weight(-1)·day(-1)) and undetectable downstream the processing plants, returning to upstream values only in the most distant downstream stations. The data suggest that free cyanide oxidation was slower than would be expected from the high water turbulence, resulting in a long-range inhibition of bacterial activity and hence mercury methylation. The important mercury fluxes resultant from mining activities raise concerns about its biomethylation in coastal areas where many mangrove areas have been converted to shrimp farming.
Science of The Total Environment | 2011
Sergio A. Coelho-Souza; Jean Remy Davée Guimarães; Márcio R. Miranda; Hugo Poirier; Jane B.N. Mauro; Marc Lucotte; Donna Mergler
Methylmercury (MeHg) increases mercury (Hg) toxicity and is biomagnified in the trophic chain contaminating riverine Amazon populations. Freshwater macrophyte roots are a main site of Hg methylation in different Brazilian environments. Paspalum repens periphyton was sampled in four floodplain lakes during the dry, rainy and wet seasons for measurement of total Hg (THg), MeHg, Hg methylation potentials, %C, %N, δ(13)C, δ(15)N and bacterial heterotrophic production as (3)H-leucine incorporation rate. THg concentration varied from 67 to 198 ng/g and the potential of Me(203)Hg formation was expressive (1-23%) showing that periphyton is an important matrix both in the accumulation of Hg and in MeHg production. The concentration of MeHg varied from 1 to 6 ng/g DW and was positively correlated with Me(203)Hg formation. Though methylmercury formation is mainly a bacterial process, no significant correlation was observed between the methylation potentials and bacterial production. The multiple regressions analyses suggested a negative correlation between THg and %C and %N and between methylation potential and δ(13)C. The discriminant analysis showed a significant difference in periphyton δ(15)N, δ(13)C and THg between seasons, where the rainy season presented higher δ(15)N and the wet period lighter δ(13)C, lower THg values and higher Me(203)Hg formation. This exploratory study indicates that the flooding cycle could influence the periphyton composition, mercury accumulation and methylmercury production.
Microbial Ecology | 2013
Sergio A. Coelho-Souza; Márcio R. Miranda; Leonardo T. Salgado; Ricardo Coutinho; Jean Remy Davée Guimarães
The ecological interaction between microorganisms and seaweeds depends on the production of secondary compounds that can influence microbial diversity in the water column and the composition of reef environments. We adapted the 3H-leucine incorporation technique to measure bacterial activity in biofilms associated with the blades of the macroalgae Sargassum spp. We evaluated (1) if the epiphytic bacteria on the blades were more active in detritus or in the biofilm, (2) substrate saturation and linearity of 3H-leucine incorporation, (3) the influence of specific metabolic inhibitors during 3H-leucine incorporation under the presence or absence of natural and artificial light, and (4) the efficiency of radiolabeled protein extraction. Scanning electron microscopy showed heterogeneous distribution of bacteria, diatoms, and polymeric extracellular secretions. Active bacteria were present in both biofilm and detritus on the blades. The highest 3H-leucine incorporation was obtained when incubating blades not colonized by macroepibionts. Incubations done under field conditions reported higher 3H-leucine incorporation than in the laboratory. Light quality and sampling manipulation seemed to be the main factors behind this difference. The use of specific metabolic inhibitors confirmed that bacteria are the main group incorporating 3H-leucine but their association with primary production suggested a symbiotic relationship between bacteria, diatoms, and the seaweed.
Science of The Total Environment | 2006
Sergio A. Coelho-Souza; Jean Remy Davée Guimarães; Jane B.N. Mauro; Márcio R. Miranda; Sandra M.F.O. Azevedo
Oecologia Brasiliensis | 2007
Sergio A. Coelho-Souza; Márcio R. Miranda; Jean Remy Davée Guimarães
Oecologia Brasiliensis | 2007
Márcio R. Miranda; Sergio A. Coelho-Souza; Jean Remy Davée Guimarães; Raquel Rose Silva Correia; Diana Ciannella Martins de Oliveira
Archive | 2018
T. da Cunha; D. de S. Oliveira; R. G. M. S. de Pontes; Márcio R. Miranda; Melissa Machado; J. de F. Astua
Oecologia Australis | 2009
Márcio R. Miranda; Sergio A. Coelho-Souza; Jean Remy Davée Guimarães; Raquel Rose Silva Correia; Diana Ciannella Martins de Oliveira
Oecologia Australis | 2009
Sergio A. Coelho-Souza; Márcio R. Miranda; Jean Remy Davée Guimarães
Collaboration
Dive into the Márcio R. Miranda's collaboration.
Diana Ciannella Martins de Oliveira
Federal University of Rio de Janeiro
View shared research outputs