Sergio A. Coelho-Souza
Federal University of Rio de Janeiro
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sergio A. Coelho-Souza.
Brazilian Journal of Oceanography | 2012
Sergio A. Coelho-Souza; María Soledad López; Jean Remy Davée Guimarães; Ricardo Coutinho; Rogério Nader Candella
The rising of cold water from deeper levels characterizes coastal upwelling systems. This flow makes nutrients available in the euphotic layer, which enhances phytoplankton production and growth. On the Brazilian coast, upwelling is most intense in the Cabo Frio region (RJ). The basic knowledge of this system was reviewed in accordance with concepts of biophysical interactions. The high frequency and amplitude of the prevailing winds are the main factor promoting the rise of South Atlantic Central Water, but meanders and eddies in the Brazil Current as well as local topography and coast line are also important. Upwelling events are common during spring/summer seasons. Primary biomass is exported by virtue of the water circulation and is also controlled by rapid zooplankton predation. Small pelagic fish regulate plankton growth and in their turn are preyed on by predatory fish. Sardine furnishes an important regional fish stock. Shoreline irregularities define the embayment formation of the Marine Extractive Reserve of Arraial do Cabo making it an area with evident different intensities of upwelled water that harbors high species diversity. Consequently, on a small spatial scale there are environments with tropical and subtropical features, a point to be explored as a particularity of this ecosystem.
PLOS ONE | 2011
Juliano C. Cury; Fábio Vieira de Araújo; Sergio A. Coelho-Souza; Raquel S. Peixoto; Joana A. L. Oliveira; Henrique F. Santos; Alberto M. R. Dávila; Alexandre S. Rosado
Background Upwelling systems are characterised by an intense primary biomass production in the surface (warmest) water after the outcrop of the bottom (coldest) water, which is rich in nutrients. Although it is known that the microbial assemblage plays an important role in the food chain of marine systems and that the upwelling systems that occur in southwest Brazil drive the complex dynamics of the food chain, little is known about the microbial composition present in this region. Methodology/Principal Findings We carried out a molecular survey based on SSU rRNA gene from the three domains of the phylogenetic tree of life present in a tropical upwelling region (Arraial do Cabo, Rio de Janeiro, Brazil). The aim was to analyse the horizontal and vertical variations of the microbial composition in two geographically close areas influenced by anthropogenic activity (sewage disposal/port activity) and upwelling phenomena, respectively. A lower estimated diversity of microorganisms of the three domains of the phylogenetic tree of life was found in the water of the area influenced by anthropogenic activity compared to the area influenced by upwelling phenomena. We observed a heterogenic distribution of the relative abundance of taxonomic groups, especially in the Archaea and Eukarya domains. The bacterial community was dominated by Proteobacteria, Cyanobacteria and Bacteroidetes phyla, whereas the microeukaryotic community was dominated by Metazoa, Fungi, Alveolata and Stramenopile. The estimated archaeal diversity was the lowest of the three domains and was dominated by uncharacterised marine Crenarchaeota that were most closely related to Marine Group I. Conclusions/Significance The variety of conditions and the presence of different microbial assemblages indicated that the area of Arraial do Cabo can be used as a model for detailed studies that contemplate the correlation between pollution-indicating parameters and the depletion of microbial diversity in areas close to anthropogenic activity; functional roles and geochemical processes; phylogeny of the uncharacterised diversity; and seasonal variations of the microbial assemblages.
Science of The Total Environment | 2011
Sergio A. Coelho-Souza; Jean Remy Davée Guimarães; Márcio R. Miranda; Hugo Poirier; Jane B.N. Mauro; Marc Lucotte; Donna Mergler
Methylmercury (MeHg) increases mercury (Hg) toxicity and is biomagnified in the trophic chain contaminating riverine Amazon populations. Freshwater macrophyte roots are a main site of Hg methylation in different Brazilian environments. Paspalum repens periphyton was sampled in four floodplain lakes during the dry, rainy and wet seasons for measurement of total Hg (THg), MeHg, Hg methylation potentials, %C, %N, δ(13)C, δ(15)N and bacterial heterotrophic production as (3)H-leucine incorporation rate. THg concentration varied from 67 to 198 ng/g and the potential of Me(203)Hg formation was expressive (1-23%) showing that periphyton is an important matrix both in the accumulation of Hg and in MeHg production. The concentration of MeHg varied from 1 to 6 ng/g DW and was positively correlated with Me(203)Hg formation. Though methylmercury formation is mainly a bacterial process, no significant correlation was observed between the methylation potentials and bacterial production. The multiple regressions analyses suggested a negative correlation between THg and %C and %N and between methylation potential and δ(13)C. The discriminant analysis showed a significant difference in periphyton δ(15)N, δ(13)C and THg between seasons, where the rainy season presented higher δ(15)N and the wet period lighter δ(13)C, lower THg values and higher Me(203)Hg formation. This exploratory study indicates that the flooding cycle could influence the periphyton composition, mercury accumulation and methylmercury production.
Brazilian Journal of Microbiology | 2013
Sergio A. Coelho-Souza; Gilberto C. Pereira; Ricardo Coutinho; Jean Remy Davée Guimarães
Arraial do Cabo is where upwelling occurs more intensively on the Brazilian coast. Although it is a protection area it suffers anthropogenic pressure such as harbor activities and sporadic sewage emissions. Short-time studies showed a high variability of bacterial production (BP) in this region but none of them evaluated BP during long periods in a large spatial scale including stations under different natural (upwelling and cold fronts) and anthropogenic pressures. During 2006, we sampled surface waters 10 times (5 in upwelling and 5 in subsidence periods) in 8 stations and we measured BP, temperature as well as the concentrations of inorganic nutrients, pigments and particulate organic matter (POM). BP was up to 400 times higher when sewage emissions were observed visually and it had a positive correlation with ammonia concentrations. Therefore, in 2007, we did two samples (each during upwelling and subsidence periods) during sewage emissions in five stations under different anthropogenic pressure and we also measured particles abundance by flow cytometry. The 12 samples in the most impacted area confirmed that BP was highest when ammonia was higher than 2 μM, also reporting the highest concentrations of chlorophyll a and suspended particles. However, considering all measured variables, upwelling was the main disturbing factor but the pressure of fronts should not be neglected since it had consequences in the auto-heterotrophic coupling, increasing the concentrations of non fluorescent particles and POM. Stations clustered in function of natural and anthropogenic pressures degrees and both determined the temporal-spatial variability.
Microbial Ecology | 2013
Sergio A. Coelho-Souza; Márcio R. Miranda; Leonardo T. Salgado; Ricardo Coutinho; Jean Remy Davée Guimarães
The ecological interaction between microorganisms and seaweeds depends on the production of secondary compounds that can influence microbial diversity in the water column and the composition of reef environments. We adapted the 3H-leucine incorporation technique to measure bacterial activity in biofilms associated with the blades of the macroalgae Sargassum spp. We evaluated (1) if the epiphytic bacteria on the blades were more active in detritus or in the biofilm, (2) substrate saturation and linearity of 3H-leucine incorporation, (3) the influence of specific metabolic inhibitors during 3H-leucine incorporation under the presence or absence of natural and artificial light, and (4) the efficiency of radiolabeled protein extraction. Scanning electron microscopy showed heterogeneous distribution of bacteria, diatoms, and polymeric extracellular secretions. Active bacteria were present in both biofilm and detritus on the blades. The highest 3H-leucine incorporation was obtained when incubating blades not colonized by macroepibionts. Incubations done under field conditions reported higher 3H-leucine incorporation than in the laboratory. Light quality and sampling manipulation seemed to be the main factors behind this difference. The use of specific metabolic inhibitors confirmed that bacteria are the main group incorporating 3H-leucine but their association with primary production suggested a symbiotic relationship between bacteria, diatoms, and the seaweed.
Anais Da Academia Brasileira De Ciencias | 2015
Sergio A. Coelho-Souza; Fábio Vieira de Araújo; Juliano C. Cury; Hugo Emiliano de Jesus; Gilberto C. Pereira; Jean Remy Davée Guimarães; Raquel S. Peixoto; Alberto M. R. Dávila; Alexandre S. Rosado
Upwelling systems contain a high diversity of pelagic microorganisms and their composition and activity are defined by factors like temperature and nutrient concentration. Denaturing gradient gel electrophoresis (DGGE) technique was used to verify the spatial and temporal genetic variability of Bacteria and Archaea in two stations of the Arraial do Cabo coastal region, one under upwelling pressure and another under anthropogenic pressure. In addition, biotic and abiotic variables were measured in surface and deep waters from three other stations between these stations. Six samplings were done during a year and adequately represented the degrees of upwelling and anthropogenic pressures to the system. Principal Component Analysis (PCA) showed negative correlations between the concentrations of ammonia and phosphorous with prokaryotic secondary production and the total heterotrophic bacteria. PCA also showed negative correlation between temperature and the abundance of prokaryotic cells. Bacterial and archaeal compositions were changeable as were the oceanographic conditions, and upwelling had a regional pressure while anthropogenic pressure was punctual. We suggest that the measurement of prokaryotic secondary production was associated with both Bacteria and Archaea activities, and that substrate availability and temperature determine nutrients cycling.
Microbial Ecology | 2017
Sergio A. Coelho-Souza; Stuart R. Jenkins; Antonio Casarin; Maria Helena Baeta-Neves; Leonardo T. Salgado; Jean Remy Davée Guimarães; Ricardo Coutinho
Holobionts are characterized by the relationship between host and their associated organisms such as the biofilm associated with macroalgae. Considering that light is essential to macroalgae survival, the aim of this study was to verify the effect of light on the heterotrophic activity in biofilms of the brown macroalgae Sargassum furcatum during its growth cycle. Measurements of heterotrophic activity were done under natural light levels at different times during a daily cycle and under an artificial extinction of natural light during the afternoon. We also measured Sargassum primary production under these light levels in the afternoon. Both measurements were done with and without photosynthesis inhibitor and antibiotics. Biofilm composition was mainly represented by bacteria but diatoms, cyanobacteria, and other organisms were also common. When a peak of diatom genera was recorded, the heterotrophic activity of the biofilm was higher. Heterotrophic activity was usually highest during the afternoon and the presence of a photosynthesis inhibitor caused an average reduction of 17% but there was no relationship with Sargassum primary production. These results indicate that autotrophic production in the biofilm was reduced by the inhibitor with consequences on bacterial activity. Heterotrophic activity was mainly bacterial and the antibiotics chloramphenicol and penicillin were more effective than streptomycin. We suggest primary producers in the biofilm are more important to increase bacterial activity than the macroalgae itself because of coherence of the peaks of heterotrophic and autotrophic activity in biofilm during the afternoon and the effects of autotrophic inhibitors on heterotrophic activity.
Science of The Total Environment | 2006
Sergio A. Coelho-Souza; Jean Remy Davée Guimarães; Jane B.N. Mauro; Márcio R. Miranda; Sandra M.F.O. Azevedo
Journal of Environmental Management | 2006
Jean Remy Davée Guimarães; Jane B.N. Mauro; Markus Meili; Marcus Sundbom; Anne-Louise Haglund; Sergio A. Coelho-Souza; Lars D. Hylander
Oecologia Brasiliensis | 2007
Sergio A. Coelho-Souza; Márcio R. Miranda; Jean Remy Davée Guimarães
Collaboration
Dive into the Sergio A. Coelho-Souza's collaboration.
Diana Ciannella Martins de Oliveira
Federal University of Rio de Janeiro
View shared research outputs