Marco A. Coelho
Universidade Nova de Lisboa
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marco A. Coelho.
PLOS Genetics | 2010
Marco A. Coelho; José Paulo Sampaio; Paula Gonçalves
In fungi, sexual identity is determined by specialized genomic regions called MAT loci which are the equivalent to sex chromosomes in some animals and plants. Usually, only two sexes or mating types exist, which are determined by two alternate sets of genes (or alleles) at the MAT locus (bipolar system). However, in the phylum Basidiomycota, a unique tetrapolar system emerged in which four different mating types are generated per meiosis. This occurs because two functionally distinct molecular recognition systems, each encoded by one MAT region, constrain the selection of sexual partners. Heterozygosity at both MAT regions is a pre-requisite for mating in both bipolar and tetrapolar basidiomycetes. Tetrapolar mating behaviour results from the absence of genetic linkage between the two regions bringing forth up to thousands of mating types. The subphylum Pucciniomycotina, an early diverged lineage of basidiomycetes encompassing important plant pathogens such as the rusts and saprobes like Rhodosporidium and Sporidiobolus, has been so far poorly explored concerning the content and organization of MAT loci. Here we show that the red yeast Sporidiobolus salmonicolor has a mating system unlike any previously described because occasional disruptions of the genetic cohesion of the bipolar MAT locus originate new mating types. We confirmed that mating is normally bipolar and that heterozygosity at both MAT regions is required for mating. However, a laboratory cross showed that meiotic recombination may occur within the bipolar MAT locus, explaining tetrapolar features like increased allele number and evolution rates of some MAT genes. This pseudo-bipolar system deviates from the classical bipolar–tetrapolar paradigm and, to our knowledge, has never been observed before. We propose a model for MAT evolution in the Basidiomycota in which the pseudo-bipolar system may represent a hitherto unforeseen gradual form of transition from an ancestral tetrapolar system to bipolarity.
PLOS Genetics | 2013
Marco A. Coelho; Carla Gonçalves; José Paulo Sampaio; Paula Gonçalves
Comparative genomics revealed in the last decade a scenario of rampant horizontal gene transfer (HGT) among prokaryotes, but for fungi a clearly dominant pattern of vertical inheritance still stands, punctuated however by an increasing number of exceptions. In the present work, we studied the phylogenetic distribution and pattern of inheritance of a fungal gene encoding a fructose transporter (FSY1) with unique substrate selectivity. 109 FSY1 homologues were identified in two sub-phyla of the Ascomycota, in a survey that included 241 available fungal genomes. At least 10 independent inter-species instances of horizontal gene transfer (HGT) involving FSY1 were identified, supported by strong phylogenetic evidence and synteny analyses. The acquisition of FSY1 through HGT was sometimes suggestive of xenolog gene displacement, but several cases of pseudoparalogy were also uncovered. Moreover, evidence was found for successive HGT events, possibly including those responsible for transmission of the gene among yeast lineages. These occurrences do not seem to be driven by functional diversification of the Fsy1 proteins because Fsy1 homologues from widely distant lineages, including at least one acquired by HGT, appear to have similar biochemical properties. In summary, retracing the evolutionary path of the FSY1 gene brought to light an unparalleled number of independent HGT events involving a single fungal gene. We propose that the turbulent evolutionary history of the gene may be linked to the unique biochemical properties of the encoded transporter, whose predictable effect on fitness may be highly variable. In general, our results support the most recent views suggesting that inter-species HGT may have contributed much more substantially to shape fungal genomes than heretofore assumed.
Eukaryotic Cell | 2008
Marco A. Coelho; André Rosa; Nádia Rodrigues; Álvaro Fonseca; Paula Gonçalves
ABSTRACT Rhodosporidium toruloides is a heterothallic, bipolar, red yeast that belongs to the Sporidiobolales, an order within a major lineage of basidiomycetes, the Pucciniomycotina. In contrast to other basidiomycetes, considerably less is known about the nature of the mating type (MAT) loci that control sexual reproduction in this lineage. Three genes (RHA1, RHA2, and RHA3) encoding precursors of the MAT A1 pheromone (rhodotorucine A) were previously identified and formed the basis for a genome walking approach that led to the identification of additional MAT genes in complementary mating strains of R. toruloides. Two mating type-specific alleles encoding a p21-activated kinase (PAK; Ste20 homolog) were found between the RHA2 and RHA3 genes, and identification in MAT A2 strains of a gene encoding a presumptive pheromone precursor enabled prediction of the structure of rhodotorucine a. In addition, a putative pheromone receptor gene (STE3 homolog) was identified upstream of RHA1. Analyses of genomic data from two closely related species, Sporobolomyces roseus and Sporidiobolus salmonicolor, identified syntenic regions that contain homologs of all the above-mentioned genes. Notably, six novel pheromone precursor genes were uncovered, which encoded, similarly to the RHA genes, multiple tandem copies of the peptide moiety. This suggests that this structure, which is unique among fungal lipopeptide pheromones, seems to be prevalent in red yeasts. Species comparisons provided evidence for a large, multigenic MAT locus structure in the Sporidiobolales, but no putative homeodomain transcription factor genes (which are present in all basidiomycetous MAT loci characterized thus far) could be found in any of the three species in the vicinity of the MAT genes identified.
BMC Evolutionary Biology | 2011
Marco A. Coelho; Paula Gonçalves; José Paulo Sampaio
BackgroundThe red yeasts are an early diverged group of basidiomycetes comprising sexual and asexual species. Sexuality is based on two compatible mating types and sexual identity is determined by MAT loci that encode homeodomain transcription factors, peptide pheromones and their receptors. The objective of the present study was to investigate the presence and integrity of MAT genes throughout the phylogenetic diversity of red yeasts belonging to the order Sporidiobolales.ResultsWe surveyed 18 sexual heterothallic and self-fertile species and 16 asexual species. Functional pheromone receptor homologues (STE3.A1 and STE3.A2) were found in multiple isolates of most of the sexual and asexual species. For each of the two mating types, sequence comparisons with whole-genome data indicated that synteny tended to be conserved along the pheromone receptor region. For the homeodomain transcription factor, likelihood methods suggested that diversifying selection acting on the self/non-self recognition region promotes diversity in sexual species, while rapid evolution seems to be due to relaxed selection in asexual strains.ConclusionsThe majority of both sexual and asexual species of red yeasts have functional pheromone receptors and homeodomain homologues. This and the frequent existence of asexual strains within sexual species, makes the separation between sexual and asexual species imprecise. Events of loss of sexuality seem to be recent and frequent, but not uniformly distributed within the Sporidiobolales. Loss of sex could promote speciation by fostering the emergence of asexual lineages from an ancestral sexual stock, but does not seem to contribute to the generation of exclusively asexual lineages that persist for a long time.
Evolution | 2012
Elsa Petit; Tatiana Giraud; Damien M. de Vienne; Marco A. Coelho; Gabriela Aguileta; Joelle Amselem; Jonathan Kreplak; Julie Poulain; Frédérick Gavory; Patrick Wincker; Sarah K. Young; Christina A. Cuomo; Michael H. Perlin; Michael E. Hood
Parallels have been drawn between the evolution of nonrecombining regions in fungal mating‐type chromosomes and animal and plant sex chromosomes, particularly regarding the stages of recombination cessation forming evolutionary strata of allelic divergence. Currently, evidence and explanations for recombination cessation in fungi are sparse, and the presence of evolutionary strata has been examined in a minimal number of fungal taxa. Here, the basidiomycete genus Microbotryum was used to determine the history of recombination cessation for loci on the mating‐type chromosomes. Ancestry of linkage with mating type for 13 loci was assessed across 20 species by a phylogenetic method. No locus was found to exhibit trans‐specific polymorphism for alternate alleles as old as the mating pheromone receptor, indicating that ages of linkage to mating type varied among the loci. The ordering of loci in the ancestry of linkage to mating type does not agree with their previously proposed assignments to evolutionary strata. This study suggests that processes capable of influencing divergence between alternate alleles may act at loci in the nonrecombining regions (e.g., gene conversion) and encourages further work to dissect the evolutionary processes acting upon genomic regions that determine mating compatibility.
Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 2010
Marco A. Coelho; João M. G. C. F. Almeida; Inês M. Martins; A. Jorge da Silva; José Paulo Sampaio
Yeasts are common inhabitants of different types of aquatic habitats, including marine and estuarine waters and rivers. Although numerous studies have surveyed yeast occurrence in these habitats, the identification of autochthonous populations has been problematic because several yeast species seem to be very versatile and therefore mere presence is not sufficient to establish an ecological association. In the present study we investigated the dynamics of the yeast community in the Tagus river estuary (Portugal) by combining a microbiological study involving isolation, quantification, and molecular identification of dominant yeast populations with the analysis of hydrological and hydrographical data. We set out to test the hypothesis of the multiple origins of estuarine yeast populations in a transect of the Tagus estuary and we postulate four possible sources: open sea, terrestrial, gastrointestinal and the estuary itself in the case of populations that have become resident. Candida parapsilosis and Pichia guilliermondii were correlated with Escherichia coli, which indicated an intestinal origin. Other cream-colored yeasts like Debaryomyces hansenii and Candida zeylanoides had similar dynamics, but no association with E. coli and quite distinct ecological preferences. They might represent a group of resident estuarine populations whose primary origin is diverse and can include marine, terrestrial, and gastrointestinal habitats. Another major yeast population was represented by Rhodotorula mucilaginosa. The cosmopolitan nature of that species and its moderate association with E. coli point to terrestrial sources as primary habitats.
Fems Yeast Research | 2015
Virginia de Garcia; Marco A. Coelho; Teresa M. Maia; Luiz H. Rosa; Aline B.M. Vaz; Carlos A. Rosa; José Paulo Sampaio; Paula Gonçalves; María van Broock; Diego Libkind
Species of Leucosporidiales are a group of psychrotolerant yeasts with biotechnological potential. In the present work, we studied the phenotypic, genetic and sexual characteristics of three species of this genus (Leucosporidium scottii, Leucosporidiella creatinivora and Le. yakutica) to clarify the evolutionary relationship among these closely related taxa. From the results obtained, it becomes clear that these yeasts can interbreed. Although genetic delimitation is possible for the three species, the extent of nucleotide substitutions and phenotypic differences observed between them are lower than that expected for species that have ended the speciation process. Our taxonomic conclusion is to maintain the three taxa until further genomic data are gathered. However, the concept of L. scottii species complex is proposed for this group of species. Finally, we transfer all Leucosporidiella and Mastigobasidium species to Leucosporidium (Leucosporidiales), and, in order to end the polyphyly condition of these taxa, we propose the new genus Pseudoleucosporidium gen. nov. and the new combination Peudoleucosporidium fasciculatum comb. nov.
Proceedings of the National Academy of Sciences of the United States of America | 2017
Sara Branco; Hélène Badouin; Ricardo C. Rodríguez de la Vega; Jérôme Gouzy; Fantin Carpentier; Gabriela Aguileta; Sophie Siguenza; Jean-Tristan Brandenburg; Marco A. Coelho; Michael E. Hood; Tatiana Giraud
Significance Sex chromosomes can display divergent evolution, as seen in humans, in which the Y chromosome underlying maleness is smaller and contains much less information than the X chromosome. The differentiation between sex chromosomes can occur stepwise along their length, which is thought to result from the successive beneficial linkage of genes with different phenotype optima in the two sexes to sex-determining genes. However, there is little evidence to support this hypothesis. Here, we recovered ancestral chromosome structures and gathered evidence for stepwise differentiation between fungal mating-type chromosomes despite the absence of male/female roles. Our results suggest that the analogous features of sex chromosomes may not be due to differences in selection between males and females. Sex chromosomes can display successive steps of recombination suppression known as “evolutionary strata,” which are thought to result from the successive linkage of sexually antagonistic genes to sex-determining genes. However, there is little evidence to support this explanation. Here we investigate whether evolutionary strata can evolve without sexual antagonism using fungi that display suppressed recombination extending beyond loci determining mating compatibility despite lack of male/female roles associated with their mating types. By comparing full-length chromosome assemblies from five anther-smut fungi with or without recombination suppression in their mating-type chromosomes, we inferred the ancestral gene order and derived chromosomal arrangements in this group. This approach shed light on the chromosomal fusion underlying the linkage of mating-type loci in fungi and provided evidence for multiple clearly resolved evolutionary strata over a range of ages (0.9–2.1 million years) in mating-type chromosomes. Several evolutionary strata did not include genes involved in mating-type determination. The existence of strata devoid of mating-type genes, despite the lack of sexual antagonism, calls for a unified theory of sex-related chromosome evolution, incorporating, for example, the influence of partially linked deleterious mutations and the maintenance of neutral rearrangement polymorphism due to balancing selection on sexes and mating types.
Genetics | 2015
Teresa M. Maia; Susana T. Lopes; João M. G. C. F. Almeida; Luiz H. Rosa; José Paulo Sampaio; Paula Gonçalves; Marco A. Coelho
In most fungi, sexual reproduction is bipolar; that is, two alternate sets of genes at a single mating-type (MAT) locus determine two mating types. However, in the Basidiomycota, a unique (tetrapolar) reproductive system emerged in which sexual identity is governed by two unlinked MAT loci, each of which controls independent mechanisms of self/nonself recognition. Tetrapolar-to-bipolar transitions have occurred on multiple occasions in the Basidiomycota, resulting, for example, from linkage of the two MAT loci into a single inheritable unit. Nevertheless, owing to the scarcity of molecular data regarding tetrapolar systems in the earliest-branching lineage of the Basidiomycota (subphylum Pucciniomycotina), it is presently unclear if the last common ancestor was tetrapolar or bipolar. Here, we address this question, by investigating the mating system of the Pucciniomycotina yeast Leucosporidium scottii. Using whole-genome sequencing and chromoblot analysis, we discovered that sexual reproduction is governed by two physically unlinked gene clusters: a multiallelic homeodomain (HD) locus and a pheromone/receptor (P/R) locus that is biallelic, thereby dismissing the existence of a third P/R allele as proposed earlier. Allele distribution of both MAT genes in natural populations showed that the two loci were in strong linkage disequilibrium, but independent assortment of MAT alleles was observed in the meiotic progeny of a test cross. The sexual cycle produces fertile progeny with similar proportions of the four mating types, but approximately 2/3 of the progeny was found to be nonhaploid. Our study adds to others in reinforcing tetrapolarity as the ancestral state of all basidiomycetes.
Mbio | 2013
Marco A. Coelho; José Paulo Sampaio; Paula Gonçalves
ABSTRACT Our understanding of the interactions between normal skin microbiota and the human host has been greatly extended by recent investigations. In their recent study in mBio, A. Gioti et al. (mBio 4[1]:e00572-12, 2013) sequenced the genome of the atopic eczema-associated yeast, Malassezia sympodialis, and compared its gene content and organization with that of Malassezia globosa, a species implicated in dandruff. Their findings were also contrasted with those previously obtained for Ustilago maydis, which is a close relative but ecologically distinct plant parasite. Besides gaining additional insight into key host-specific adaptations and the particular function and molecular evolution of allergens related to atopic eczema, Gioti et al. also uncovered several lines of evidence that elegantly suggest the presence of an extant sexual cycle, with important implications in disease.