Marco Fritzsche
University of Oxford
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marco Fritzsche.
Nature Materials | 2013
Emad Moeendarbary; Léo Valon; Marco Fritzsche; Andrew R. Harris; Dale Moulding; Adrian J. Thrasher; Eleanor Stride; L. Mahadevan; Guillaume Charras
The cytoplasm is the largest part of the cell by volume and hence its rheology sets the rate at which cellular shape changes can occur. Recent experimental evidence suggests that cytoplasmic rheology can be described by a poroelastic model, in which the cytoplasm is treated as a biphasic material consisting of a porous elastic solid meshwork (cytoskeleton, organelles, macromolecules) bathed in an interstitial fluid (cytosol). In this picture, the rate of cellular deformation is limited by the rate at which intracellular water can redistribute within the cytoplasm. However, direct supporting evidence for the model is lacking. Here we directly validate the poroelastic model to explain cellular rheology at physiologically relevant timescales using microindentation tests in conjunction with mechanical, chemical and genetic treatments. Our results show that water redistribution through the solid phase of the cytoplasm (cytoskeleton and macromolecular crowders) plays a fundamental role in setting cellular rheology.
Current Biology | 2014
Miia Bovellan; Yves Romeo; Maté Biro; Annett Boden; Priyamvada Chugh; Amina Yonis; Malti Vaghela; Marco Fritzsche; Dale Moulding; Richard Thorogate; Antoine Jégou; Adrian J. Thrasher; Guillaume Romet-Lemonne; Philippe P. Roux; Ewa Paluch; Guillaume Charras
Summary The contractile actin cortex is a thin layer of actin, myosin, and actin-binding proteins that subtends the membrane of animal cells. The cortex is the main determinant of cell shape and plays a fundamental role in cell division [1–3], migration [4], and tissue morphogenesis [5]. For example, cortex contractility plays a crucial role in amoeboid migration of metastatic cells [6] and during division, where its misregulation can lead to aneuploidy [7]. Despite its importance, our knowledge of the cortex is poor, and even the proteins nucleating it remain unknown, though a number of candidates have been proposed based on indirect evidence [8–15]. Here, we used two independent approaches to identify cortical actin nucleators: a proteomic analysis using cortex-rich isolated blebs, and a localization/small hairpin RNA (shRNA) screen searching for phenotypes with a weakened cortex or altered contractility. This unbiased study revealed that two proteins generated the majority of cortical actin: the formin mDia1 and the Arp2/3 complex. Each nucleator contributed a similar amount of F-actin to the cortex but had very different accumulation kinetics. Electron microscopy examination revealed that each nucleator affected cortical network architecture differently. mDia1 depletion led to failure in division, but Arp2/3 depletion did not. Interestingly, despite not affecting division on its own, Arp2/3 inhibition potentiated the effect of mDia1 depletion. Our findings indicate that the bulk of the actin cortex is nucleated by mDia1 and Arp2/3 and suggest a mechanism for rapid fine-tuning of cortex structure and mechanics by adjusting the relative contribution of each nucleator.
Molecular Biology of the Cell | 2013
Marco Fritzsche; Alexandre Lewalle; Tom Duke; Karsten Kruse; Guil laume Charras
Two filament subpopulations with very different turnover rates make up the actin cortex in living cells: one with fast turnover dynamics and polymerization resulting from addition of monomers to free barbed ends, and one with slow turnover dynamics with polymerization resulting from formin-mediated filament growth.
Nature Communications | 2013
Kerry Wilson; Alexandre Lewalle; Marco Fritzsche; Richard Thorogate; Tom Duke; Guillaume Charras
While the molecular and biophysical mechanisms underlying cell protrusion on two-dimensional substrates are well understood, our knowledge of the actin structures driving protrusion in three-dimensional environments is poor, despite relevance to inflammation, development and cancer. Here we report that, during chemotactic migration through microchannels with 5 μm × 5 μm cross-sections, HL60 neutrophil-like cells assemble an actin-rich slab filling the whole channel cross-section at their front. This leading edge comprises two distinct F-actin networks: an adherent network that polymerizes perpendicular to cell-wall interfaces and a ‘free’ network that grows from the free membrane at the cell front. Each network is polymerized by a distinct nucleator and, due to their geometrical arrangement, the networks interact mechanically. On the basis of our experimental data, we propose that, during interstitial migration, medial growth of the adherent network compresses the free network preventing its retrograde movement and enabling new polymerization to be converted into forward protrusion.
FEBS Journal | 2010
Miia Bovellan; Marco Fritzsche; Craig Stevens; Guillaume Charras
Death‐associated protein kinase (DAPK) regulates many distinct signalling events, including apoptosis, autophagy and membrane blebbing. The role of DAPK in the blebbing process is only beginning to be understood and, in this review, we will first summarize what is known about the cytoskeletal proteins and signalling cascades that participate in bleb growth and retraction and then highlight how DAPK integrates with these processes. Membrane blebs are quasispherical cellular protrusions that have a lifetime of approximately 2 min. During expansion, blebs are initially devoid of actin, although actomyosin contractions provide the motive force for growth. Once growth slows, an actin cortex reforms and actin‐bundling and contractile proteins are recruited. Finally, myosin contraction powers bleb retraction into the cell body. Blebbing occurs in a variety of cell types, from cancerous cells to embryonic cells, and can be seen in cellular phenomena as diverse as cell spreading, movement, cytokinesis and cell death. Although the machinery that executes this is still undefined in detail, the conservation of blebbing phenomenon suggests a fundamental role in metazoans and DAPK offers a door to further dissect this fascinating process.
Science Advances | 2016
Marco Fritzsche; Christoph Erlenkämper; Emad Moeendarbary; Guillaume Charras; Karsten Kruse
Cells adjust their macroscopic mechanical properties by tuning the actin protomer concentration and activity of actin nucleators. The actin cortex of animal cells is the main determinant of cellular mechanics. The continuous turnover of cortical actin filaments enables cells to quickly respond to stimuli. Recent work has shown that most of the cortical actin is generated by only two actin nucleators, the Arp2/3 complex and the formin Diaph1. However, our understanding of their interplay, their kinetics, and the length distribution of the filaments that they nucleate within living cells is poor. Such knowledge is necessary for a thorough comprehension of cellular processes and cell mechanics from basic polymer physics principles. We determined cortical assembly rates in living cells by using single-molecule fluorescence imaging in combination with stochastic simulations. We find that formin-nucleated filaments are, on average, 10 times longer than Arp2/3-nucleated filaments. Although formin-generated filaments represent less than 10% of all actin filaments, mechanical measurements indicate that they are important determinants of cortical elasticity. Tuning the activity of actin nucleators to alter filament length distribution may thus be a mechanism allowing cells to adjust their macroscopic mechanical properties to their physiological needs.
Nano Letters | 2016
H Colin-York; Dilip Shrestha; James H. Felce; Dominic Waithe; Emad Moeendarbary; Simon J. Davis; Christian Eggeling; Marco Fritzsche
Measuring small forces is a major challenge in cell biology. Here we improve the spatial resolution and accuracy of force reconstruction of the well-established technique of traction force microscopy (TFM) using STED microscopy. The increased spatial resolution of STED-TFM (STFM) allows a greater than 5-fold higher sampling of the forces generated by the cell than conventional TFM, accessing the nano instead of the micron scale. This improvement is highlighted by computer simulations and an activating RBL cell model system.
Nature Protocols | 2015
Marco Fritzsche; Guillaume Charras
Proteins within most macromolecular complexes or organelles continuously turn over. This turnover results from association and dissociation reactions that are mediated by each of the proteins functional domains. Thus, studying organelle or macromolecular formation from the bottom up using theoretical and computational modeling approaches will necessitate the determination of all of these reaction rates in vivo. Yet current methods for examining protein dynamics either necessitate highly specialized equipment or limit themselves to basic measurements. In this protocol, we describe a broadly applicable method based on fluorescence recovery after photobleaching (FRAP) for determining how many reaction processes participate in the turnover of any given protein of interest, for characterizing their apparent association and dissociation rates, and for determining their relative importance in the turnover of the overall protein population. Experiments were performed in melanoma M2 cells expressing mutant forms of ezrin that provide a link between the plasma membrane and the cortical actin cytoskeleton. We also describe a general strategy for the identification of the protein domains that mediate each of the identified turnover processes. Our protocol uses widely available laser-scanning confocal microscopes, open-source software, graphing software and common molecular biology techniques. The entire FRAP experiment preparation, data acquisition and analysis require 3–4 d.
Science Advances | 2017
Marco Fritzsche; R A Fernandes; Veronica T. Chang; H Colin-York; Mathias P. Clausen; James H. Felce; Silvia Galiani; C Erlenkämper; Ana Mafalda Santos; J M Heddleston; I Pedroza-Pacheco; Dominic Waithe; J B de la Serna; B C Lagerholm; Liu T-L.; Chew T-L.; Eric Betzig; Simon J. Davis; Christian Eggeling
Activating T cells reorganize their cortical actin to form a ramified transportation network beneath the immunological synapse. T cell activation and especially trafficking of T cell receptor microclusters during immunological synapse formation are widely thought to rely on cytoskeletal remodeling. However, important details on the involvement of actin in the latter transport processes are missing. Using a suite of advanced optical microscopes to analyze resting and activated T cells, we show that, following contact formation with activating surfaces, these cells sequentially rearrange their cortical actin across the entire cell, creating a previously unreported ramifying actin network above the immunological synapse. This network shows all the characteristics of an inward-growing transportation network and its dynamics correlating with T cell receptor rearrangements. This actin reorganization is accompanied by an increase in the nanoscale actin meshwork size and the dynamic adjustment of the turnover times and filament lengths of two differently sized filamentous actin populations, wherein formin-mediated long actin filaments support a very flat and stiff contact at the immunological synapse interface. The initiation of immunological synapse formation, as highlighted by calcium release, requires markedly little contact with activating surfaces and no cytoskeletal rearrangements. Our work suggests that incipient signaling in T cells initiates global cytoskeletal rearrangements across the whole cell, including a stiffening process for possibly mechanically supporting contact formation at the immunological synapse interface as well as a central ramified transportation network apparently directed at the consolidation of the contact and the delivery of effector functions.
Nature Communications | 2017
Marco Fritzsche; D. Li; H Colin-York; Veronica T. Chang; Emad Moeendarbary; James H. Felce; Erdinc Sezgin; Guillaume Charras; Eric Betzig; Christian Eggeling
Cell-free studies have demonstrated how collective action of actin-associated proteins can organize actin filaments into dynamic patterns, such as vortices, asters and stars. Using complementary microscopic techniques, we here show evidence of such self-organization of the actin cortex in living HeLa cells. During cell adhesion, an active multistage process naturally leads to pattern transitions from actin vortices over stars into asters. This process is primarily driven by Arp2/3 complex nucleation, but not by myosin motors, which is in contrast to what has been theoretically predicted and observed in vitro. Concomitant measurements of mechanics and plasma membrane fluidity demonstrate that changes in actin patterning alter membrane architecture but occur functionally independent of macroscopic cortex elasticity. Consequently, tuning the activity of the Arp2/3 complex to alter filament assembly may thus be a mechanism allowing cells to adjust their membrane architecture without affecting their macroscopic mechanical properties.