Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christian Eggeling is active.

Publication


Featured researches published by Christian Eggeling.


Journal of Lipid Research | 2016

A comparative study on fluorescent cholesterol analogs as versatile cellular reporters

Erdinc Sezgin; Fatma Betul Can; Falk Schneider; Mathias P. Clausen; Silvia Galiani; Tess A. Stanly; Dominic Waithe; Alexandria Colaco; Alf Honigmann; Daniel Wüstner; Frances M. Platt; Christian Eggeling

Cholesterol (Chol) is a crucial component of cellular membranes, but knowledge of its intracellular dynamics is scarce. Thus, it is of utmost interest to develop tools for visualization of Chol organization and dynamics in cells and tissues. For this purpose, many studies make use of fluorescently labeled Chol analogs. Unfortunately, the introduction of the label may influence the characteristics of the analog, such as its localization, interaction, and trafficking in cells; hence, it is important to get knowledge of such bias. In this report, we compared different fluorescent lipid analogs for their performance in cellular assays: 1) plasma membrane incorporation, specifically the preference for more ordered membrane environments in phase-separated giant unilamellar vesicles and giant plasma membrane vesicles; 2) cellular trafficking, specifically subcellular localization in Niemann-Pick type C disease cells; and 3) applicability in fluorescence correlation spectroscopy (FCS)-based and super-resolution stimulated emission depletion-FCS-based measurements of membrane diffusion dynamics. The analogs exhibited strong differences, with some indicating positive performance in the membrane-based experiments and others in the intracellular trafficking assay. However, none showed positive performance in all assays. Our results constitute a concise guide for the careful use of fluorescent Chol analogs in visualizing cellular Chol dynamics.


Nature Communications | 2016

A simple and versatile design concept for fluorophore derivatives with intramolecular photostabilization

Jasper H. M. van der Velde; Jens Oelerich; Jingyi Huang; Jochem H. Smit; Atieh Aminian Jazi; Silvia Galiani; Kirill Kolmakov; Giorgos Guoridis; Christian Eggeling; Andreas Herrmann; Gerard Roelfes; Thorben Cordes

Intramolecular photostabilization via triple-state quenching was recently revived as a tool to impart synthetic organic fluorophores with ‘self-healing’ properties. To date, utilization of such fluorophore derivatives is rare due to their elaborate multi-step synthesis. Here we present a general strategy to covalently link a synthetic organic fluorophore simultaneously to a photostabilizer and biomolecular target via unnatural amino acids. The modular approach uses commercially available starting materials and simple chemical transformations. The resulting photostabilizer–dye conjugates are based on rhodamines, carbopyronines and cyanines with excellent photophysical properties, that is, high photostability and minimal signal fluctuations. Their versatile use is demonstrated by single-step labelling of DNA, antibodies and proteins, as well as applications in single-molecule and super-resolution fluorescence microscopy. We are convinced that the presented scaffolding strategy and the improved characteristics of the conjugates in applications will trigger the broader use of intramolecular photostabilization and help to emerge this approach as a new gold standard.


Biochimica et Biophysica Acta | 2016

Regulation of peroxisomal matrix protein import by ubiquitination

Harald W. Platta; Rebecca Brinkmeier; Christina Reidick; Silvia Galiani; Mathias P. Clausen; Christian Eggeling

Peroxisomes are organelles that play an important role in many cellular tasks. The functionality of peroxisomes depends on the proper import of their matrix proteins. Peroxisomal matrix proteins are imported posttranslationally in a folded, sometimes even oligomeric state. They harbor a peroxisomal targeting sequence (PTS), which is recognized by dynamic PTS-receptors in the cytosol. The PTS-receptors ferry the cargo to the peroxisomal membrane, where they become part of a transient import pore and then release the cargo into the peroxisomal lumen. Subsequentially, the PTS-receptors are ubiquitinated in order to mark them for the export-machinery, which releases them back to the cytosol. Upon deubiquitination, the PTS-receptors can facilitate further rounds of cargo import. Because the ubiquitination of the receptors is an essential step in the import cycle, it also represents a central regulatory element that governs peroxisomal dynamics. In this review we want to give an introduction to the functional role played by ubiquitination during peroxisomal protein import and highlight the mechanistic concepts that have emerged based on data derived from different species since the discovery of the first ubiquitinated peroxin 15years ago. Moreover, we discuss future tasks and the potential of using advanced technologies for investigating further details of peroxisomal protein transport.


Journal of Biological Chemistry | 2016

Super-resolution Microscopy Reveals Compartmentalization of Peroxisomal Membrane Proteins.

Silvia Galiani; Dominic Waithe; Katharina Reglinski; Luis Daniel Cruz-Zaragoza; Esther Garcia; Mathias P. Clausen; Wolfgang Schliebs; Ralf Erdmann; Christian Eggeling

Membrane-associated events during peroxisomal protein import processes play an essential role in peroxisome functionality. Many details of these processes are not known due to missing spatial resolution of technologies capable of investigating peroxisomes directly in the cell. Here, we present the use of super-resolution optical stimulated emission depletion microscopy to investigate with sub-60-nm resolution the heterogeneous spatial organization of the peroxisomal proteins PEX5, PEX14, and PEX11 around actively importing peroxisomes, showing distinct differences between these peroxins. Moreover, imported protein sterol carrier protein 2 (SCP2) occupies only a subregion of larger peroxisomes, highlighting the heterogeneous distribution of proteins even within the peroxisome. Finally, our data reveal subpopulations of peroxisomes showing only weak colocalization between PEX14 and PEX5 or PEX11 but at the same time a clear compartmentalized organization. This compartmentalization, which was less evident in cases of strong colocalization, indicates dynamic protein reorganization linked to changes occurring in the peroxisomes. Through the use of multicolor stimulated emission depletion microscopy, we have been able to characterize peroxisomes and their constituents to a yet unseen level of detail while maintaining a highly statistical approach, paving the way for equally complex biological studies in the future.


European Journal of Immunology | 2018

Infection with a Brazilian isolate of Zika virus generates RIG‐I stimulatory RNA and the viral NS5 protein blocks type I IFN induction and signalling

Jonny Hertzog; Antonio Gregorio Dias Junior; Rachel E. Rigby; Claire L. Donald; Alice Mayer; Erdinc Sezgin; Chaojun Song; Boquan Jin; Philip Hublitz; Christian Eggeling; Alain Kohl; Jan Rehwinkel

Zika virus (ZIKV) is a major public health concern in the Americas. We report that ZIKV infection and RNA extracted from ZIKV infected cells potently activated the induction of type I interferons (IFNs). This effect was fully dependent on the mitochondrial antiviral signaling protein (MAVS), implicating RIG‐I‐like receptors (RLRs) as upstream sensors of viral RNA. Indeed, RIG‐I and the related RNA sensor MDA5 contributed to type I IFN induction in response to RNA from infected cells. We found that ZIKV NS5 from a recent Brazilian isolate blocked type I IFN induction downstream of RLRs and also inhibited type I IFN receptor (IFNAR) signaling. We defined the ZIKV NS5 nuclear localization signal and report that NS5 nuclear localization was not required for inhibition of signaling downstream of IFNAR. Mechanistically, NS5 blocked IFNAR signaling by both leading to reduced levels of STAT2 and by blocking phosphorylation of STAT1, two transcription factors activated by type I IFNs. Taken together, our observations suggest that ZIKV infection induces a type I IFN response via RLRs and that ZIKV interferes with this response by blocking signaling downstream of RLRs and IFNAR.


Nature Immunology | 2018

Capturing resting T cells: the perils of PLL

Ana Mafalda Santos; Aleks Ponjavic; Marco Fritzsche; Ricardo Fernandes; J B de la Serna; M J Wilcock; Falk Schneider; Iztok Urbančič; James McColl; Consuelo Anzilotti; Kristina A. Ganzinger; M Aßmann; David Depoil; Richard J. Cornall; Michael L. Dustin; David Klenerman; Simon J. Davis; Christian Eggeling; Steven F. Lee

Supported by a Royal Society University Research Fellowship (UF120277 to S.F.L.) and Research Professorship (RP150066 to D.K.); the EPSRC (EP/L027631/1 to A.P.,); the Wellcome Trust (098274/Z/12/Z to S.J.D., and WT101609MA to R.A.F.); PA Cephalosporin Fund (C.E.); the Wolfson Imaging Centre Oxford (funded by the Wolfson Foundation and Wellcome Trust; 104924/14/Z/14); the Micron Advanced BioImaging Unit (Wellcome Trust Strategic Award 091911); the Medical Research Council (MC_UU_12010/Unit Programmes G0902418 and MC_UU_12025); an MRC/BBSRC/EPSRC award (MR/K01577X/1); and a Marie Sklodowska-Curie Intra-European grant (707348 to I.U.).


Proceedings of SPIE | 2016

ns-Time Resolution for Multispecies STED-FLIM and Artifact Free STED-FCS

Marcelle Koenig; Paja Reisch; Rhys Dowler; Benedikt Kraemer; Sebastian Tannert; Matthias Patting; Mathias P. Clausen; Silvia Galiani; Christian Eggeling; Felix Koberling; Rainer Erdmann

Stimulated Emission Depletion (STED) Microscopy has evolved into a well established method offering optical superresolution below 50 nm. Running both excitation and depletion lasers in picosecond pulsed modes allows for highest optical resolution as well as fully exploiting the photon arrival time information using time-resolved single photon counting (TCSPC). Non-superresolved contributions can be easily dismissed through time-gated detection (gated STED) or a more detailed fluorescence decay analysis (FLIM-STED), both leading to an even further improved imaging resolution. Furthermore, these methods allow for accurate separation of different fluorescent species, especially if subtle differences in the excitation and emission spectra as well as the fluorescence decay are taken into account in parallel. STED can also be used to shrink the observation volume while studying the dynamics of diffusing species in Fluorescence Correlation Spectroscopy (FCS) to overcome averaging issues along long transit paths. A further unique advantage of STED-FCS is that the observation spot diameter can be tuned in a gradual manner enabling, for example, determining the type of hindered diffusion in lipid membrane studies. Our completely pulsed illumination scheme allows realizing an improved STED-FCS data acquisition using pulsed interleaved excitation (PIE). PIE-STED-FCS allows for a straightforward online check whether the STED laser has an influence on the investigated diffusion dynamics.


Nano Letters | 2018

Nanoscale Spatiotemporal Diffusion Modes Measured by Simultaneous Confocal and Stimulated Emission Depletion Nanoscopy Imaging

Falk Schneider; Dominic Waithe; Silvia Galiani; Jorge Bernardino de la Serna; Erdinc Sezgin; Christian Eggeling

The diffusion dynamics in the cellular plasma membrane provide crucial insights into molecular interactions, organization, and bioactivity. Beam-scanning fluorescence correlation spectroscopy combined with super-resolution stimulated emission depletion nanoscopy (scanning STED–FCS) measures such dynamics with high spatial and temporal resolution. It reveals nanoscale diffusion characteristics by measuring the molecular diffusion in conventional confocal mode and super-resolved STED mode sequentially for each pixel along the scanned line. However, to directly link the spatial and the temporal information, a method that simultaneously measures the diffusion in confocal and STED modes is needed. Here, to overcome this problem, we establish an advanced STED–FCS measurement method, line interleaved excitation scanning STED–FCS (LIESS–FCS), that discloses the molecular diffusion modes at different spatial positions with a single measurement. It relies on fast beam-scanning along a line with alternating laser illumination that yields, for each pixel, the apparent diffusion coefficients for two different observation spot sizes (conventional confocal and super-resolved STED). We demonstrate the potential of the LIESS–FCS approach with simulations and experiments on lipid diffusion in model and live cell plasma membranes. We also apply LIESS–FCS to investigate the spatiotemporal organization of glycosylphosphatidylinositol-anchored proteins in the plasma membrane of live cells, which, interestingly, show multiple diffusion modes at different spatial positions.


Nature Communications | 2018

FRET-enhanced photostability allows improved single-molecule tracking of proteins and protein complexes in live mammalian cells

Srinjan Basu; Lisa-Maria Needham; David Lando; Edward J. R. Taylor; Kai J. Wohlfahrt; Devina Shah; Wayne Boucher; Yi Lei Tan; Lawrence E. Bates; Olga Tkachenko; Julie Cramard; B. Christoffer Lagerholm; Christian Eggeling; Brian Hendrich; Dave Klenerman; Steven F. Lee; Ernest D. Laue

A major challenge in single-molecule imaging is tracking the dynamics of proteins or complexes for long periods of time in the dense environments found in living cells. Here, we introduce the concept of using FRET to enhance the photophysical properties of photo-modulatable (PM) fluorophores commonly used in such studies. By developing novel single-molecule FRET pairs, consisting of a PM donor fluorophore (either mEos3.2 or PA-JF549) next to a photostable acceptor dye JF646, we demonstrate that FRET competes with normal photobleaching kinetic pathways to increase the photostability of both donor fluorophores. This effect was further enhanced using a triplet-state quencher. Our approach allows us to significantly improve single-molecule tracking of chromatin-binding proteins in live mammalian cells. In addition, it provides a novel way to track the localization and dynamics of protein complexes by labeling one protein with the PM donor and its interaction partner with the acceptor dye.Single molecule tracking of fluorescent proteins in live cells is temporally limited by fluorophore photobleaching. Here the authors show using fluorophore pairs that FRET competes with photobleaching to improve photostability and allow longer-term tracking of both single proteins and complexes.


Journal of Physics D | 2018

Complementary studies of lipid membrane dynamics using iSCAT and super-resolved fluorescence correlation spectroscopy

Francesco Reina; Silvia Galiani; Dilip Shrestha; Erdinc Sezgin; G de Wit; Daniel Cole; B C Lagerholm; Philipp Kukura; Christian Eggeling

Abstract Observation techniques with high spatial and temporal resolution, such as single-particle tracking based on interferometric scattering (iSCAT) microscopy, and fluorescence correlation spectroscopy applied on a super-resolution STED microscope (STED-FCS), have revealed new insights of the molecular organization of membranes. While delivering complementary information, there are still distinct differences between these techniques, most prominently the use of fluorescent dye tagged probes for STED-FCS and a need for larger scattering gold nanoparticle tags for iSCAT. In this work, we have used lipid analogues tagged with a hybrid fluorescent tag–gold nanoparticle construct, to directly compare the results from STED-FCS and iSCAT measurements of phospholipid diffusion on a homogeneous supported lipid bilayer (SLB). These comparative measurements showed that while the mode of diffusion remained free, at least at the spatial (>40u2009nm) and temporal (50u2009u2009⩽u2009u2009tu2009u2009⩽u2009u2009100u2009ms) scales probed, the diffussion coefficient was reduced by 20- to 60-fold when tagging with 20 and 40u2009nm large gold particles as compared to when using dye tagged lipid analogues. These FCS measurements of hybrid fluorescent tag–gold nanoparticle labeled lipids also revealed that commercially supplied streptavidin-coated gold nanoparticles contain large quantities of free streptavidin. Finally, the values of apparent diffusion coefficients obtained by STED-FCS and iSCAT differed by a factor of 2–3 across the techniques, while relative differences in mobility between different species of lipid analogues considered were identical in both approaches. In conclusion, our experiments reveal that large and potentially cross-linking scattering tags introduce a significant slow-down in diffusion on SLBs but no additional bias, and our labeling approach creates a new way of exploiting complementary information from STED-FCS and iSCAT measurements.

Collaboration


Dive into the Christian Eggeling's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mathias P. Clausen

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge