Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marco J. Koudijs is active.

Publication


Featured researches published by Marco J. Koudijs.


Nature Genetics | 2003

The microRNA-producing enzyme Dicer1 is essential for zebrafish development

Erno Wienholds; Marco J. Koudijs; Freek van Eeden; Edwin Cuppen; Ronald H.A. Plasterk

MicroRNAs (miRNAs) are produced by the Dicer1 enzyme; the role of Dicer1 in vertebrate development is unknown. Here we report target-selected inactivation of the dicer1 gene in zebrafish. We observed an initial build-up of miRNA levels, produced by maternal Dicer1, in homozygous dicer1 mutants, but miRNA accumulation stopped after a few days. This resulted in developmental arrest around day 10. These results indicate that miRNA-producing Dicer1 is essential for vertebrate development.


Genome Biology | 2011

Chromothripsis is a common mechanism driving genomic rearrangements in primary and metastatic colorectal cancer

Wigard P. Kloosterman; Marlous Hoogstraat; Oscar Paling; Masoumeh Tavakoli-Yaraki; Ivo Renkens; Joost S. Vermaat; Markus J. van Roosmalen; Stef van Lieshout; Isaac J. Nijman; Wijnand M. Roessingh; Ruben van 't Slot; Jose van de Belt; Victor Guryev; Marco J. Koudijs; Emile E. Voest; Edwin Cuppen

BackgroundStructural rearrangements form a major class of somatic variation in cancer genomes. Local chromosome shattering, termed chromothripsis, is a mechanism proposed to be the cause of clustered chromosomal rearrangements and was recently described to occur in a small percentage of tumors. The significance of these clusters for tumor development or metastatic spread is largely unclear.ResultsWe used genome-wide long mate-pair sequencing and SNP array profiling to reveal that chromothripsis is a widespread phenomenon in primary colorectal cancer and metastases. We find large and small chromothripsis events in nearly every colorectal tumor sample and show that several breakpoints of chromothripsis clusters and isolated rearrangements affect cancer genes, including NOTCH2, EXO1 and MLL3. We complemented the structural variation studies by sequencing the coding regions of a cancer exome in all colorectal tumor samples and found somatic mutations in 24 genes, including APC, KRAS, SMAD4 and PIK3CA. A pairwise comparison of somatic variations in primary and metastatic samples indicated that many chromothripsis clusters, isolated rearrangements and point mutations are exclusively present in either the primary tumor or the metastasis and may affect cancer genes in a lesion-specific manner.ConclusionsWe conclude that chromothripsis is a prevalent mechanism driving structural rearrangements in colorectal cancer and show that a complex interplay between point mutations, simple copy number changes and chromothripsis events drive colorectal tumor development and metastasis.


Journal of Biological Chemistry | 2004

Glycosylation Is Important for Cell Surface Expression of the Water Channel Aquaporin-2 but Is Not Essential for Tetramerization in the Endoplasmic Reticulum

Giel Hendriks; Marco J. Koudijs; Bas W. M. van Balkom; Viola Oorschot; Judith Klumperman; Peter M. T. Deen; Peter van der Sluijs

Aquaporin-2 (AQP2) is a pore-forming protein that is required for regulated reabsorption of water from urine. Mutations in AQP2 lead to nephrogenic diabetes insipidus, a disorder in which functional AQP2 is not expressed on the apical cell surface of kidney collecting duct principal cells. The mechanisms and pathways directing AQP2 from the endoplasmic reticulum to the Golgi complex and beyond have not been defined. We found that ∼25% of newly synthesized AQP2 is glycosylated. Nonglycosylated and complex-glycosylated wild-type AQP2 are stable proteins with a half-life of 6-12 h and are both detectable on the cell surface. We show that AQP2 forms tetramers in the endoplasmic reticulum during or very early after synthesis and reaches the Golgi complex in 1-1.5 h. We also report that glycosylation is neither essential for tetramerization nor for transport from the endoplasmic reticulum to the Golgi complex. Instead, the N-linked glycan is important for exit from the Golgi complex and sorting of AQP2 to the plasma membrane. These results are important for understanding the molecular mechanisms responsible for the intracellular retention of AQP2 in nephrogenic diabetes insipidus.


Clinical Cancer Research | 2012

Primary Colorectal Cancers and Their Subsequent Hepatic Metastases Are Genetically Different: Implications for Selection of Patients for Targeted Treatment

Joost S. Vermaat; Isaac J. Nijman; Marco J. Koudijs; Frank L. Gerritse; Stefan J. Scherer; Michal Mokry; Wijnand M. Roessingh; Nico Lansu; Ewart de Bruijn; Richard van Hillegersberg; Paul J. van Diest; Edwin Cuppen; Emile E. Voest

Purpose: In the era of DNA-guided personalized cancer treatment, it is essential to conduct predictive analysis on the tissue that matters. Here, we analyzed genetic differences between primary colorectal adenocarcinomas (CRC) and their respective hepatic metastasis. Experimental Design: The primary CRC and the subsequent hepatic metastasis of 21 patients with CRC were analyzed using targeted deep-sequencing of DNA isolated from formalin-fixed, paraffin-embedded archived material. Results: We have interrogated the genetic constitution of a designed “Cancer Mini-Genome” consisting of all exons of 1,264 genes associated with pathways relevant to cancer. In total, 6,696 known and 1,305 novel variations were identified in 1,174 and 667 genes, respectively, including 817 variants that potentially altered protein function. On average, 83 (SD = 69) potentially function-impairing variations were gained in the metastasis and 70 (SD = 48) variations were lost, showing that the primary tumor and hepatic metastasis are genetically significantly different. Besides novel and known variations in genes such as KRAS, BRAF, KDR, FLT1, PTEN, and PI3KCA, aberrations in the up/downstream genes of EGFR/PI3K/VEGF-pathways and other pathways (mTOR, TGFβ, etc.) were also detected, potentially influencing therapeutic responsiveness. Chemotherapy between removal of the primary tumor and the metastasis (N = 11) did not further increase the amount of genetic variation. Conclusion: Our study indicates that the genetic characteristics of the hepatic metastases are different from those of the primary CRC tumor. As a consequence, the choice of treatment in studies investigating targeted therapies should ideally be based on the genetic properties of the metastasis rather than on those of the primary tumor. Clin Cancer Res; 18(3); 688–99. ©2011 AACR.


PLOS ONE | 2014

Ovarian Cancer Cell Line Panel (OCCP): Clinical Importance of In Vitro Morphological Subtypes

Corine M. Beaufort; Jean C. Helmijr; Anna Piskorz; Marlous Hoogstraat; Kirsten Ruigrok-Ritstier; Nicolle J.M. Besselink; Muhammed Murtaza; Wilfred van IJcken; Anouk A. J. Heine; Marcel Smid; Marco J. Koudijs; James D. Brenton; Els M. J. J. Berns; Jozien Helleman

Epithelial ovarian cancer is a highly heterogeneous disease and remains the most lethal gynaecological malignancy in the Western world. Therapeutic approaches need to account for inter-patient and intra-tumoural heterogeneity and detailed characterization of in vitro models representing the different histological and molecular ovarian cancer subtypes is critical to enable reliable preclinical testing. There are approximately 100 publicly available ovarian cancer cell lines but their cellular and molecular characteristics are largely undescribed. We have characterized 39 ovarian cancer cell lines under uniform conditions for growth characteristics, mRNA/microRNA expression, exon sequencing, drug response for clinically-relevant therapeutics and collated all available information on the original clinical features and site of origin. We tested for statistical associations between the cellular and molecular features of the lines and clinical features. Of the 39 ovarian cancer cell lines, 14 were assigned as high-grade serous, four serous-type, one low-grade serous and 20 non-serous type. Three morphological subtypes: Epithelial (n = 21), Round (n = 7) and Spindle (n = 12) were identified that showed distinct biological and molecular characteristics, including overexpression of cell movement and migration-associated genes in the Spindle subtype. Comparison with the original clinical data showed association of the spindle-like tumours with metastasis, advanced stage, suboptimal debulking and poor prognosis. In addition, the expression profiles of Spindle, Round and Epithelial morphologies clustered with the previously described C1-stromal, C5-mesenchymal and C4 ovarian subtype expression profiles respectively. Comprehensive profiling of 39 ovarian cancer cell lines under controlled, uniform conditions demonstrates clinically relevant cellular and genomic characteristics. This data provides a rational basis for selecting models to develop specific treatment approaches for histological and molecular subtypes of ovarian cancer.


PLOS Genetics | 2005

The Zebrafish Mutants dre, uki, and lep Encode Negative Regulators of the Hedgehog Signaling Pathway

Marco J. Koudijs; Marjo J. den Broeder; Astrid Keijser; Erno Wienholds; Saskia Houwing; Ellen van Rooijen; Robert Geisler; Fredericus J. M. van Eeden

Proliferation is one of the basic processes that control embryogenesis. To identify factors involved in the regulation of proliferation, we performed a zebrafish genetic screen in which we used proliferating cell nuclear antigen (PCNA) expression as a readout. Two mutants, hu418B and hu540A, show increased PCNA expression. Morphologically both mutants resembled the dre (dreumes), uki (ukkie), and lep (leprechaun) mutant class and both are shown to be additional uki alleles. Surprisingly, although an increased size is detected of multiple structures in these mutant embryos, adults become dwarfs. We show that these mutations disrupt repressors of the Hedgehog (Hh) signaling pathway. The dre, uki, and lep loci encode Su(fu) (suppressor of fused), Hip (Hedgehog interacting protein), and Ptc2 (Patched2) proteins, respectively. This class of mutants is therefore unique compared to previously described Hh mutants from zebrafish genetic screens, which mainly show loss of Hh signaling. Furthermore, su(fu) and ptc2 mutants have not been described in vertebrate model systems before. Inhibiting Hh activity by cyclopamine rescues uki and lep mutants and confirms the overactivation of the Hh signaling pathway in these mutants. Triple uki/dre/lep mutants show neither an additive increase in PCNA expression nor enhanced embryonic phenotypes, suggesting that other negative regulators, possibly Ptc1, prevent further activation of the Hh signaling pathway. The effects of increased Hh signaling resulting from the genetic alterations in the uki, dre, and lep mutants differ from phenotypes described as a result of Hh overexpression and therefore provide additional insight into the role of Hh signaling during vertebrate development.


BMC Developmental Biology | 2008

Genetic analysis of the two zebrafish patched homologues identifies novel roles for the hedgehog signaling pathway

Marco J. Koudijs; Marjo J. den Broeder; Evelyn Groot; Fredericus J. M. van Eeden

BackgroundAberrant activation of the Hedgehog (Hh) signaling pathway in different organisms has shown the importance of this family of morphogens during development. Genetic screens in zebrafish have assigned specific roles for Hh in proliferation, differentiation and patterning, but mainly as a result of a loss of its activity. We attempted to fully activate the Hh pathway by removing both receptors for the Hh proteins, called Patched1 and 2, which are functioning as negative regulators in this pathway.ResultsHere we describe a splice-donor mutation in Ptc1, called ptc1hu1602, which in a homozygous state results in a subtle eye and somite phenotype. Since we recently positionally cloned a ptc2 mutant, a ptc1;ptc2 double mutant was generated, showing severely increased levels of ptc1, gli1 and nkx2.2a, confirming an aberrant activation of Hh signaling. As a consequence, a number of phenotypes were observed that have not been reported previously using Shh mRNA overexpression. Somites of ptc1;ptc2 double mutants do not express anteroposterior polarity markers, however initial segmentation of the somites itself is not affected. This is the first evidence that segmentation and anterior/posterior (A/P) patterning of the somites are genetically uncoupled processes. Furthermore, a novel negative function of Hh signaling is observed in the induction of the fin field, acting well before any of the previously reported function of Shh in fin formation and in a way that is different from the proposed early role of Gli3 in limb/fin bud patterning.ConclusionThe generation and characterization of the ptc1;ptc2 double mutant assigned novel and unexpected functions to the Hh signaling pathway. Additionally, these mutants will provide a useful system to further investigate the consequences of constitutively activated Hh signaling during vertebrate development.


Genome Research | 2011

High-throughput semiquantitative analysis of insertional mutations in heterogeneous tumors

Marco J. Koudijs; Christiaan Klijn; Louise van der Weyden; Jaap Kool; Jelle ten Hoeve; Daoud Sie; Pramudita Prasetyanti; Eva Schut; Sjors M. Kas; Theodore Whipp; Edwin Cuppen; Lodewyk F. A. Wessels; David J. Adams; Jos Jonkers

Retroviral and transposon-based insertional mutagenesis (IM) screens are widely used for cancer gene discovery in mice. Exploiting the full potential of IM screens requires methods for high-throughput sequencing and mapping of transposon and retroviral insertion sites. Current protocols are based on ligation-mediated PCR amplification of junction fragments from restriction endonuclease-digested genomic DNA, resulting in amplification biases due to uneven genomic distribution of restriction enzyme recognition sites. Consequently, sequence coverage cannot be used to assess the clonality of individual insertions. We have developed a novel method, called shear-splink, for the semiquantitative high-throughput analysis of insertional mutations. Shear-splink employs random fragmentation of genomic DNA, which reduces unwanted amplification biases. Additionally, shear-splink enables us to assess clonality of individual insertions by determining the number of unique ligation points (LPs) between the adapter and genomic DNA. This parameter serves as a semiquantitative measure of the relative clonality of individual insertions within heterogeneous tumors. Mixing experiments with clonal cell lines derived from mouse mammary tumor virus (MMTV)-induced tumors showed that shear-splink enables the semiquantitative assessment of the clonality of MMTV insertions. Further, shear-splink analysis of 16 MMTV- and 127 Sleeping Beauty (SB)-induced tumors showed enrichment for cancer-relevant insertions by exclusion of irrelevant background insertions marked by single LPs, thereby facilitating the discovery of candidate cancer genes. To fully exploit the use of the shear-splink method, we set up the Insertional Mutagenesis Database (iMDB), offering a publicly available web-based application to analyze both retroviral- and transposon-based insertional mutagenesis data.


Genome Research | 2014

Genomic and transcriptomic plasticity in treatment-naïve ovarian cancer

Marlous Hoogstraat; Mirjam S. de Pagter; Geert A. Cirkel; Markus J. van Roosmalen; Timothy T. Harkins; Karen Duran; Jennifer Kreeftmeijer; Ivo Renkens; Petronella O. Witteveen; Clarence Lee; Isaac J. Nijman; Tanisha Guy; Ruben van 't Slot; Trudy N. Jonges; Martijn P. Lolkema; Marco J. Koudijs; Ronald P. Zweemer; Emile E. Voest; Edwin Cuppen; Wigard P. Kloosterman

Intra-tumor heterogeneity is a hallmark of many cancers and may lead to therapy resistance or interfere with personalized treatment strategies. Here, we combined topographic mapping of somatic breakpoints and transcriptional profiling to probe intra-tumor heterogeneity of treatment-naïve stage IIIC/IV epithelial ovarian cancer. We observed that most substantial differences in genomic rearrangement landscapes occurred between metastases in the omentum and peritoneum versus tumor sites in the ovaries. Several cancer genes such as NF1, CDKN2A, and FANCD2 were affected by lesion-specific breakpoints. Furthermore, the intra-tumor variability involved different mutational hallmarks including lesion-specific kataegis (local mutation shower coinciding with genomic breakpoints), rearrangement classes, and coding mutations. In one extreme case, we identified two independent TP53 mutations in ovary tumors and omentum/peritoneum metastases, respectively. Examination of gene expression dynamics revealed up-regulation of key cancer pathways including WNT, integrin, chemokine, and Hedgehog signaling in only subsets of tumor samples from the same patient. Finally, we took advantage of the multilevel tumor analysis to understand the effects of genomic breakpoints on qualitative and quantitative gene expression changes. We show that intra-tumor gene expression differences are caused by site-specific genomic alterations, including formation of in-frame fusion genes. These data highlight the plasticity of ovarian cancer genomes, which may contribute to their strong capacity to adapt to changing environmental conditions and give rise to the high rate of recurrent disease following standard treatment regimes.


American Journal of Clinical Pathology | 2015

Comparison of Next-Generation Sequencing and Mutation-Specific Platforms in Clinical Practice

John W. J. Hinrichs; W. T. Marja van Blokland; Michiel Moons; Remco D. Radersma; Joyce H. Radersma-van Loon; Carmen M. A. de Voijs; Sophie B. Rappel; Marco J. Koudijs; Nicolle J.M. Besselink; Stefan M. Willems; Roel A. de Weger

OBJECTIVES To compare next-generation sequencing (NGS) platforms with mutation-specific analysis platforms in a clinical setting, in terms of sensitivity, mutation specificity, costs, capacity, and ease of use. METHODS We analyzed 25 formalin-fixed, paraffin-embedded lung cancer samples of different size and tumor percentage for known KRAS and EGFR hotspot mutations with two dedicated genotyping platforms (cobas [Roche Diagnostics, Almere, The Netherlands] and Rotor-Gene [QIAGEN, Venlo, The Netherlands]) and two NGS platforms (454 Genome Sequencer [GS] junior [Roche Diagnostics] and Ion Torrent Personal Genome Machine [Life Technologies, Bleiswijk, The Netherlands]). RESULTS All platforms, except the 454 GS junior, detected the mutations originally detected by Sanger sequencing and high-resolution melting prescreening and detected an additional KRAS mutation. The dedicated genotyping platforms outperformed the NGS platforms in speed and ease of use. The large sequencing capacity of the NGS platforms enabled them to deliver all mutation information for all samples at once. CONCLUSIONS Sensitivity for detecting mutations was highly comparable among all platforms. The choice for either a dedicated genotyping platform or an NGS platform is basically a trade-off between speed and genetic information.

Collaboration


Dive into the Marco J. Koudijs's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emile E. Voest

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jos Jonkers

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rob Pieters

Boston Children's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge