Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marco Mainardi is active.

Publication


Featured researches published by Marco Mainardi.


Frontiers in Aging Neuroscience | 2014

Environmental enrichment strengthens corticocortical interactions and reduces amyloid-β oligomers in aged mice

Marco Mainardi; Angelo Di Garbo; Matteo Caleo; Nicoletta Berardi; Alessandro Sale; Lamberto Maffei

Brain aging is characterized by global changes which are thought to underlie age-related cognitive decline. These include variations in brain activity and the progressive increase in the concentration of soluble amyloid-β (Aβ) oligomers, directly impairing synaptic function and plasticity even in the absence of any neurodegenerative disorder. Considering the high social impact of the decline in brain performance associated to aging, there is an urgent need to better understand how it can be prevented or contrasted. Lifestyle components, such as social interaction, motor exercise and cognitive activity, are thought to modulate brain physiology and its susceptibility to age-related pathologies. However, the precise functional and molecular factors that respond to environmental stimuli and might mediate their protective action again pathological aging still need to be clearly identified. To address this issue, we exploited environmental enrichment (EE), a reliable model for studying the effect of experience on the brain based on the enhancement of cognitive, social and motor experience, in aged wild-type mice. We analyzed the functional consequences of EE on aged brain physiology by performing in vivo local field potential (LFP) recordings with chronic implants. In addition, we also investigated changes induced by EE on molecular markers of neural plasticity and on the levels of soluble Aβ oligomers. We report that EE induced profound changes in the activity of the primary visual and auditory cortices and in their functional interaction. At the molecular level, EE enhanced plasticity by an upward shift of the cortical excitation/inhibition balance. In addition, EE reduced brain Aβ oligomers and increased synthesis of the Aβ-degrading enzyme neprilysin. Our findings strengthen the potential of EE procedures as a non-invasive paradigm for counteracting brain aging processes.


Neuron | 2012

A radial glia-specific role of RhoA in double cortex formation

Silvia Cappello; Christian R.J. Böhringer; Matteo Bergami; Karl-Klaus Conzelmann; Alexander Ghanem; Giulio Srubek Tomassy; Paola Arlotta; Marco Mainardi; Manuela Allegra; Matteo Caleo; Jolanda van Hengel; Cord Brakebusch; Magdalena Götz

The positioning of neurons in the cerebral cortex is of crucial importance for its function as highlighted by the severe consequences of migrational disorders in patients. Here we show that genetic deletion of the small GTPase RhoA in the developing cerebral cortex results in two migrational disorders: subcortical band heterotopia (SBH), a heterotopic cortex underlying the normotopic cortex, and cobblestone lissencephaly, in which neurons protrude beyond layer I at the pial surface of the brain. Surprisingly, RhoA(-/-) neurons migrated normally when transplanted into wild-type cerebral cortex, whereas the converse was not the case. Alterations in the radial glia scaffold are demonstrated to cause these migrational defects through destabilization of both the actin and the microtubules cytoskeleton. These data not only demonstrate that RhoA is largely dispensable for migration in neurons but also showed that defects in radial glial cells, rather than neurons, can be sufficient to produce SBH.


Journal of Neuroscience Research | 2010

Environmental Enrichment Potentiates Thalamocortical Transmission and Plasticity in the Adult Rat Visual Cortex

Marco Mainardi; Silvia Landi; Laura Gianfranceschi; Sara Baldini; Roberto De Pasquale; Nicoletta Berardi; Lamberto Maffei; Matteo Caleo

It has been demonstrated that the complex sensorimotor and social stimulation achieved by rearing animals in an enriched environment (EE) can reinstate juvenile‐like plasticity in the adult cortex. However, it is not known whether EE can affect thalamocortical transmission. Here, we recorded in vivo field potentials from the visual cortex evoked by electrical stimulation of the dorsal lateral geniculate nucleus (dLGN) in anesthetized rats. We found that a period of EE during adulthood shifted the input–output curves and increased paired‐pulse depression, suggesting an enhanced synaptic strength at thalamocortical terminals. Accordingly, EE animals showed an increased expression of the vesicular glutamate transporter 2 (vGluT‐2) in geniculocortical afferents to layer IV. Rats reared in EE also showed an enhancement of thalamocortical long‐term potentiation (LTP) triggered by theta‐burst stimulation (TBS) of the dLGN. To monitor the functional consequences of increased LTP in EE rats, we recorded visual evoked potentials (VEPs) before and after application of TBS to the geniculocortical pathway. We found that responses to visual stimulation were enhanced across a range of contrasts in EE animals. This was accompanied by an up‐regulation of the intracortical excitatory synaptic marker vGluT‐1 and a decrease in the expression of the vesicular GABA transporter (vGAT), indicating a shift in the excitation/inhibition ratio. Thus, in the adult rat, EE enhances synaptic strength and plasticity of the thalamocortical pathway associated with specific changes in glutamatergic and GABAergic neurotransmission. These data provide novel insights into the mechanisms by which EE shapes the adult brain.


Proceedings of the National Academy of Sciences of the United States of America | 2010

A sensitive period for environmental regulation of eating behavior and leptin sensitivity

Marco Mainardi; Gaia Scabia; Teresa Vottari; Ferruccio Santini; Aldo Pinchera; Lamberto Maffei; Tommaso Pizzorusso; Margherita Maffei

Western lifestyle contributes to body weight dysregulation. Leptin down-regulates food intake by modulating the activity of neural circuits in the hypothalamic arcuate nucleus (ARC), and resistance to this hormone constitutes a permissive condition for obesity. Physical exercise modulates leptin sensitivity in diet-induced obese rats. The role of other lifestyle components in modulating leptin sensitivity remains elusive. Environmentally enriched mice were used to explore the effects of lifestyle change on leptin production/action and other metabolic parameters. We analyzed adult mice exposed to environmental enrichment (EE), which showed decreased leptin, reduced adipose mass, and increased food intake. We also analyzed 50-d-old mice exposed to either EE (YEE) or physical exercise (YW) since birth, both of which showed decreased leptin. YEE mice showed no change in food intake, increased response to leptin administration, increased activation of STAT3 in the ARC. The YW leptin-induced food intake response was intermediate between young mice kept in standard conditions and YEE. YEE exhibited increased and decreased ratios of excitatory/inhibitory synapses onto α-melanocyte-stimulating hormone and agouti-related peptide neurons of the ARC, respectively. We also analyzed animals as described for YEE and then placed in standard cages for 1 mo. They showed no altered leptin production/action but demonstrated changes in excitatory/inhibitory synaptic contacts in the ARC similar to YEE. EE and physical activity resulted in improved insulin sensitivity. In conclusion, EE and physical activity had an impact on feeding behavior, leptin production/action, and insulin sensitivity, and EE affected ARC circuitry. The leptin-hypothalamic axis is maximally enhanced if environmental stimulation is applied during development.


PLOS ONE | 2009

Reduced Responsiveness to Long-Term Monocular Deprivation of Parvalbumin Neurons Assessed by c-Fos Staining in Rat Visual Cortex

Marco Mainardi; Silvia Landi; Nicoletta Berardi; Lamberto Maffei; Tommaso Pizzorusso

Background It is generally assumed that visual cortical cells homogeneously shift their ocular dominance (OD) in response to monocular deprivation (MD), however little experimental evidence directly supports this notion. By using immunohistochemistry for the activity-dependent markers c-Fos and Arc, coupled with staining for markers of inhibitory cortical sub-populations, we studied whether long-term MD initiated at P21 differentially affects visual response of inhibitory neurons in rat binocular primary visual cortex. Methodology/Principal Findings The inhibitory markers GAD67, parvalbumin (PV), calbindin (CB) and calretinin (CR) were used. Visually activated Arc did not colocalize with PV and was discarded from further studies. MD decreased visually induced c-Fos activation in GAD67 and CR positive neurons. The CB population responded to MD with a decrease of CB expression, while PV cells did not show any effect of MD on c-Fos expression. The persistence of c-Fos expression induced by deprived eye stimulation in PV cells is not likely to be due to a particularly low threshold for activity-dependent c-Fos induction. Indeed, c-Fos induction by increasing concentrations of the GABAA antagonist picrotoxin in visual cortical slices was similar between PV cells and the other cortical neurons. Conclusion These data indicate that PV cells are particularly refractory to MD, suggesting that different cortical subpopulation may show different response to MD.


Neuropharmacology | 2012

New signalling pathway involved in the anti-proliferative action of vitamin D3 and its analogues in human neuroblastoma cells. A role for ceramide kinase

Francesca Bini; Alessia Frati; Mercedes Garcia-Gil; Chiara Battistini; Maria H. Granado; Maria Martinesi; Marco Mainardi; Eleonora Vannini; Federico Luzzati; Matteo Caleo; Paolo Peretto; Antonio Gómez-Muñoz; Elisabetta Meacci

1α,25-Dihydroxyvitamin D3 (1,25(OH)₂D₃), a crucial regulator of calcium/phosphorus homeostasis, has important physiological effects on growth and differentiation in a variety of malignant and non-malignant cells. Synthetic structural hormone analogues, with lower hypercalcemic side effects, are currently under clinical investigation. Sphingolipids appear to be crucial bioactive factors in the control of the cell fate: the phosphorylated forms, sphingosine-1-phosphate (S1P) and ceramide-1-phosphate (C1P), are mitogenic factors, whereas sphingosine and ceramide (Cer) usually act as pro-apoptotic agents. Although many studies correlate S1P function to impaired cell growth, the relevance of C1P/Cer system and its involvement in neuroblastoma cells remain to be clarified. Here, we demonstrated the anti-proliferative effect of 1,25(OH)₂D₃ as well as of its structural analogues, ZK156979 and ZK191784, in human SH-SY5Y cells, as judged by [³H]thymidine incorporation, cell growth and evaluation of active ERK1/2 levels. The inhibition of ceramide kinase (CerK), the enzyme responsible for C1P synthesis, by specific gene silencing or pharmacological inhibition, drastically reduced cell proliferation. 1,25(OH)₂D₃ and ZK191784 treatment induced a significant decrease in CerK expression and C1P content, and an increase of Cer. Notably, the treatment of SH-SY5Y cells with ZK159222, antagonist of 1,25(OH)₂D₃ receptor, trichostatin A, inhibitor of histone deacetylases, and COUP-TFI-siRNA prevented the decrease of CerK expression elicited by 1,25(OH)₂D₃ supporting the involvement of VDR/COUP-TFI/histone deacetylase complex in CerK regulation. Altogether, these findings provide the first evidence that CerK/C1P axis acts as molecular effector of the anti-proliferative action of 1,25(OH)₂D₃ and its analogues, thereby representing a new possible target for anti-cancer therapy of human neuroblastoma.


Scientific Reports | 2017

Randomized trial on the effects of a combined physical/cognitive training in aged MCI subjects: the Train the Brain study

Lamberto Maffei; Eugenio Picano; M. G. Andreassi; Andrea Angelucci; Filippo Baldacci; Laura Baroncelli; Tatjana Begenisic; P.F. Bellinvia; Nicoletta Berardi; L. Biagi; Joyce Bonaccorsi; Enrica Bonanni; Ubaldo Bonuccelli; Andrea Borghini; Chiara Braschi; M. Broccardi; Rosa Maria Bruno; Matteo Caleo; C. Carlesi; L. Carnicelli; G. Cartoni; Luca Cecchetti; Maria Cristina Cenni; Roberto Ceravolo; Lucia Chico; Simona Cintoli; Giovanni Cioni; M. Coscia; Mario Costa; G. D’Angelo

Age-related cognitive impairment and dementia are an increasing societal burden. Epidemiological studies indicate that lifestyle factors, e.g. physical, cognitive and social activities, correlate with reduced dementia risk; moreover, positive effects on cognition of physical/cognitive training have been found in cognitively unimpaired elders. Less is known about effectiveness and action mechanisms of physical/cognitive training in elders already suffering from Mild Cognitive Impairment (MCI), a population at high risk for dementia. We assessed in 113 MCI subjects aged 65–89 years, the efficacy of combined physical-cognitive training on cognitive decline, Gray Matter (GM) volume loss and Cerebral Blood Flow (CBF) in hippocampus and parahippocampal areas, and on brain-blood-oxygenation-level-dependent (BOLD) activity elicited by a cognitive task, measured by ADAS-Cog scale, Magnetic Resonance Imaging (MRI), Arterial Spin Labeling (ASL) and fMRI, respectively, before and after 7 months of training vs. usual life. Cognitive status significantly decreased in MCI-no training and significantly increased in MCI-training subjects; training increased parahippocampal CBF, but no effect on GM volume loss was evident; BOLD activity increase, indicative of neural efficiency decline, was found only in MCI-no training subjects. These results show that a non pharmacological, multicomponent intervention improves cognitive status and indicators of brain health in MCI subjects.


Neural Plasticity | 2013

Environment, Leptin Sensitivity, and Hypothalamic Plasticity

Marco Mainardi; Tommaso Pizzorusso; Margherita Maffei

Regulation of feeding behavior has been a crucial step in the interplay between leptin and the arcuate nucleus of the hypothalamus (ARC). On one hand, the basic mechanisms regulating central and peripheral action of leptin are becoming increasingly clear. On the other hand, knowledge on how brain sensitivity to leptin can be modulated is only beginning to accumulate. This point is of paramount importance if one considers that pathologically obese subjects have high levels of plasmatic leptin. A possible strategy for exploring neural plasticity in the ARC is to act on environmental stimuli. This can be achieved with various protocols, namely, physical exercise, high-fat diet, caloric restriction, and environmental enrichment. Use of these protocols can, in turn, be exploited to isolate key molecules with translational potential. In the present review, we summarize present knowledge about the mechanisms of plasticity induced by the environment in the ARC. In addition, we also address the role of leptin in extrahypothalamic plasticity, in order to propose an integrated view of how a single diffusible factor can regulate diverse brain functions.


Epilepsia | 2012

Tetanus neurotoxin-induced epilepsy in mouse visual cortex

Marco Mainardi; Marta Pietrasanta; Eleonora Vannini; Ornella Rossetto; Matteo Caleo

Tetanus neurotoxin (TeNT) is a metalloprotease that cleaves the synaptic protein VAMP/synaptobrevin, leading to focal epilepsy. Although this model is widely used in rats, the time course and spatial specificity of TeNT proteolytic action have not been precisely defined. Here we have studied the biochemical, electrographic, and anatomic characteristics of TeNT‐induced epilepsy in mouse visual cortex (V1). We found that VAMP cleavage peaked at 10 days, was reduced at 21 days, and completely extinguished 45 days following TeNT delivery. VAMP proteolysis was restricted to the injected V1 and ipsilateral thalamus, whereas it was undetectable in other cortical areas. Electrographic epileptiform activity was evident both during and after the time window of TeNT effects, indicating development of chronic epilepsy. Anatomic analyses found no evidence for long‐term tissue damage, such as neuronal loss or microglia activation. These data show that TeNT reliably induces nonlesional epilepsy in mouse cortex. Due to the excellent physiologic knowledge of the visual cortex and the availability of mouse transgenic strains, this model will be useful for examining the network and cellular alterations underlying hyperexcitability within an epileptic focus.


PLOS ONE | 2011

Environmental Enrichment Modulates Cortico-Cortical Interactions in the Mouse

Angelo Di Garbo; Marco Mainardi; Santi Chillemi; Lamberto Maffei; Matteo Caleo

Environmental enrichment (EE) is an experimental protocol based on a complex sensorimotor stimulation that dramatically affects brain development. While it is widely believed that the effects of EE result from the unique combination of different sensory and motor stimuli, it is not known whether and how cortico-cortical interactions are shaped by EE. Since the primary visual cortex (V1) is one of the best characterized targets of EE, we looked for direct cortico-cortical projections impinging on V1, and we identified a direct monosynaptic connection between motor cortex and V1 in the mouse brain. To measure the interactions between these areas under standard and EE rearing conditions, we used simultaneous recordings of local field potentials (LFPs) in awake, freely moving animals. LFP signals were analyzed by using different methods of linear and nonlinear analysis of time series (cross-correlation, mutual information, phase synchronization). We found that EE decreases the level of coupling between the electrical activities of the two cortical regions with respect to the control group. From a functional point of view, our results indicate, for the first time, that an enhanced sensorimotor experience impacts on the brain by affecting the functional crosstalk between different cortical areas.

Collaboration


Dive into the Marco Mainardi's collaboration.

Top Co-Authors

Avatar

Matteo Caleo

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Lamberto Maffei

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alessandro Sale

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Manuela Scali

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge