Manuela Scali
National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Manuela Scali.
European Journal of Neuroscience | 2010
Davide Silingardi; Manuela Scali; Giulio Belluomini; Tommaso Pizzorusso
In mammals the development of the visual system may be altered during a sensitive period by modifying the visual input to one or both eyes. These plastic processes are reduced after the end of the sensitive period. It has been proposed that reduced levels of plasticity are at the basis of the lack of recovery from early visual deprivation observed in adult animals. A developmental downregulation of experience‐dependent regulation of histone acetylation has recently been found to be involved in closing the sensitive period. Therefore, we tested whether pharmacological epigenetic treatments increasing histone acetylation could be used to reverse visual acuity deficits induced by long‐term monocular deprivation initiated during the sensitive period. We found that chronic intraperitoneal administration of valproic acid or sodium butyrate (two different histone deacetylases inhibitors) to long‐term monocularly deprived adult rats coupled with reverse lid‐suturing caused a complete recovery of visual acuity, tested electrophysiologically and behaviorally. Thus, manipulations of the epigenetic machinery can be used to promote functional recovery from early alterations of sensory input in the adult cortex.
Experimental Gerontology | 2012
Manuela Scali; Laura Baroncelli; Maria Cristina Cenni; Alessandro Sale; Lamberto Maffei
Brain aging is characterized by functional deterioration across multiple systems, associated to a progressive decay of neural plasticity. Here, we explored environmental enrichment (EE), a condition of enhanced sensory-motor and cognitive stimulation, as a strategy to restore plasticity processes in the old brain. Visual system is one of the paradigmatic models for studying experience-dependent plasticity. While reducing input from one eye through monocular deprivation induces a marked ocular dominance (OD) shift of neurons in the primary visual cortex during development, the same manipulation is totally ineffective after the closure of the critical period. We show that EE is able to reactivate OD plasticity in the visual cortex of aging rats, as assessed with both visual-evoked potentials and single-unit recordings. A marked reduction in intracortical GABAergic inhibition and a remodeling of extracellular matrix accompany this effect. The non-invasive nature of EE makes this paradigm eligible for human application.
Scientific Reports | 2017
Lamberto Maffei; Eugenio Picano; M. G. Andreassi; Andrea Angelucci; Filippo Baldacci; Laura Baroncelli; Tatjana Begenisic; P.F. Bellinvia; Nicoletta Berardi; L. Biagi; Joyce Bonaccorsi; Enrica Bonanni; Ubaldo Bonuccelli; Andrea Borghini; Chiara Braschi; M. Broccardi; Rosa Maria Bruno; Matteo Caleo; C. Carlesi; L. Carnicelli; G. Cartoni; Luca Cecchetti; Maria Cristina Cenni; Roberto Ceravolo; Lucia Chico; Simona Cintoli; Giovanni Cioni; M. Coscia; Mario Costa; G. D’Angelo
Age-related cognitive impairment and dementia are an increasing societal burden. Epidemiological studies indicate that lifestyle factors, e.g. physical, cognitive and social activities, correlate with reduced dementia risk; moreover, positive effects on cognition of physical/cognitive training have been found in cognitively unimpaired elders. Less is known about effectiveness and action mechanisms of physical/cognitive training in elders already suffering from Mild Cognitive Impairment (MCI), a population at high risk for dementia. We assessed in 113 MCI subjects aged 65–89 years, the efficacy of combined physical-cognitive training on cognitive decline, Gray Matter (GM) volume loss and Cerebral Blood Flow (CBF) in hippocampus and parahippocampal areas, and on brain-blood-oxygenation-level-dependent (BOLD) activity elicited by a cognitive task, measured by ADAS-Cog scale, Magnetic Resonance Imaging (MRI), Arterial Spin Labeling (ASL) and fMRI, respectively, before and after 7 months of training vs. usual life. Cognitive status significantly decreased in MCI-no training and significantly increased in MCI-training subjects; training increased parahippocampal CBF, but no effect on GM volume loss was evident; BOLD activity increase, indicative of neural efficiency decline, was found only in MCI-no training subjects. These results show that a non pharmacological, multicomponent intervention improves cognitive status and indicators of brain health in MCI subjects.
The Journal of Neuroscience | 2016
Laura Baroncelli; Manuela Scali; Gabriele Sansevero; Francesco Olimpico; Ilaria Manno; Mario Costa; Alessandro Sale
During an early phase of enhanced sensitivity called the critical period (CP), monocular deprivation causes a shift in the response of visual cortex binocular neurons in favor of the nondeprived eye, a process named ocular dominance (OD) plasticity. While the time course of the CP for OD plasticity can be modulated by genetic/pharmacological interventions targeting GABAergic inhibition, whether an increased sensory-motor experience can affect this major plastic phenomenon is not known. We report that exposure to environmental enrichment (EE) accelerated the closure of the CP for OD plasticity in the rat visual cortex. Histone H3 acetylation was developmentally regulated in primary visual cortex, with enhanced levels being detectable early in enriched pups, and chromatin immunoprecipitation revealed an increase at the level of the BDNF P3 promoter. Administration of the histone deacetylase inhibitor SAHA (suberoylanilide hydroxamic acid) to animals reared in a standard cage mimicked the increase in H3 acetylation observed in the visual cortex and resulted in an accelerated decay of OD plasticity. Finally, exposure to EE in adulthood upregulated H3 acetylation and was paralleled by a reopening of the CP. These findings demonstrate a critical involvement of the epigenetic machinery as a mediator of visual cortex developmental plasticity and of the impact of EE on OD plasticity. SIGNIFICANCE STATEMENT While it is known that an epigenetic remodeling of chromatin structure controls developmental plasticity in the visual cortex, three main questions have remained open. Which is the physiological time course of histone modifications? Is it possible, by manipulating the chromatin epigenetic state, to modulate plasticity levels during the critical period? How can we regulate histone acetylation in the adult brain in a noninvasive manner? We show that the early exposure of rat pups to enriching environmental conditions accelerates the critical period for plasticity in the primary visual cortex, linking this effect to increased histone acetylation, specifically at the BDNF gene level. Moreover, we report that the exposure of adult animals to environmental enrichment enhances histone acetylation and reopens juvenile-like plasticity.
Scientific Reports | 2013
Manuela Scali; Tatjana Begenisic; Marco Mainardi; Marco Milanese; Tiziana Bonifacino; Giambattista Bonanno; Alessandro Sale; Lamberto Maffei
Spinal cord injury (SCI) is a severe condition leading to enduring motor deficits. When lesions are incomplete, promoting spinal cord plasticity might be a useful strategy to elicit functional recovery. Here we investigated whether long-term fluoxetine administration in the drinking water, a treatment recently demonstrated to optimize brain plasticity in several pathological conditions, promotes motor recovery in rats that received a C4 dorsal funiculus crush. We show that fluoxetine administration markedly improved motor functions compared to controls in several behavioral paradigms. The improved functional effects correlated positively with significant sprouting of intact corticospinal fibers and a modulation of the excitation/inhibition balance. Our results suggest a potential application of fluoxetine treatment as a non invasive therapeutic strategy for SCI-associated neuropathologies.
Journal of Neuroscience Research | 2009
Elisa Brilli; Manuela Scali; Simona Casarosa; Matthias Köhler; Yuri Bozzi
Importins, also called karyopherins, belong to a large family of proteins involved in cytoplasm‐to‐nucleus transport. Transport machinery generally involves a complex formed by two different importin subtypes (α and β). Both α and β importins are expressed in the brain, and their expression and localization is regulated by physiological neuronal activity. Little is known about regulation of importin expression in brain pathological conditions. Here we studied the expression of importin β1 (impβ1) in the rat hippocampus after acute and chronic seizures induced by the glutamate agonist kainic acid (KA). The overall content of impβ1 mRNA and protein did not change after acute KA seizures. However, acute KA seizures rapidly induced the translocation of impβ1 protein from the cytoplasm to the nucleus in pyramidal CA1 neurons. KA‐induced impβ1 translocation was prevented by the NMDA (N‐methyl‐D‐aspartic acid) receptor blocker MK‐801. After chronic seizures, the overall levels of impβ1 mRNA and protein did not change in the whole hippocampus. Immunohistochemistry revealed a massive loss of impβ1‐positive neurons in pyramidal layers (that degenerated after KA), whereas an increased number of impβ1‐positive cells was detected in the stratum radiatum of rats with chronic seizures compared with control animals. Double‐labeling experiments identified these cells as glial cells expressing the chondroitin sulfate proteoglycan NG2 (neuron/glial antigen 2), a glial subtype recently shown to regulate hippocampal neuron excitability. These data show a differential regulation of impβ1 expression after acute and chronic seizure activity in the rat hippocampus.
Brain Research | 2006
Stefania Castellano; Francesca Macchi; Manuela Scali; Josh Z. Huang; Yuri Bozzi
Branched chain aminotransferase (BCAT) catalyzes the transamination of the essential branched chain amino acids (leucine, isoleucine and valine) with alpha-ketoglutarate. BCAT exists in two isoforms: one cytosolic (BCATc), mainly expressed in the nervous system, and the other mitochondrial (BCATm), present in a greater number of tissues. We previously showed that BCATc mRNA and protein expression in the dorsal lateral geniculate nucleus of the thalamus is up-regulated by exogenous administration of brain-derived neurotrophic factor (BDNF) following lesion of the visual cortex in newborn rats. Here, we analyzed the expression of BCATc mRNA in the brain of transgenic mice overexpressing the rat BDNF cDNA under the control of the alpha-calcium/calmodulin-dependent kinase II (alphaCaMKII) promoter. In these animals, BDNF is overexpressed in the telencephalon starting from the second postnatal week. RT-PCR and in situ hybridization experiments showed that BCATc mRNA is overexpressed in restricted regions of the cerebral cortex (parietal area) and hippocampus (hilus and CA3 pyramidal cell layer) of adult BDNF transgenic mice respect to wild-type animals. These differences between wt and BDNF mice were not detected in animals of 1 week of age. These results demonstrate that the expression of the BCATc gene in the brain is specifically regulated by BDNF in a time- and region-dependent fashion.
Frontiers in Pediatrics | 2014
Giovanni Provenzano; Elena Clementi; Sacha Genovesi; Manuela Scali; Prem Prakash Tripathi; Paola Sgadò; Yuri Bozzi
Insulin-like growth factor 1 (IGF-1) signaling promotes brain development and plasticity. Altered IGF-1 expression has been associated to autism spectrum disorders (ASD). IGF-1 levels were found increased in the blood and decreased in the cerebrospinal fluid of ASD children. Accordingly, IGF-1 treatment can rescue behavioral deficits in mouse models of ASD, and IGF-1 trials have been proposed for ASD children. IGF-1 is mainly synthesized in the liver, and its synthesis is dependent on growth hormone (GH) produced in the pituitary gland. GH also modulates cognitive functions, and altered levels of GH have been detected in ASD patients. Here, we analyzed the expression of GH, IGF-1, their receptors, and regulatory hormones in the neuroendocrine system of adult male mice lacking the homeobox transcription factor Engrailed-2 (En2−/− mice). En2−/− mice display ASD-like behaviors (social interactions, defective spatial learning, increased seizure susceptibility) accompanied by relevant neuropathological changes (loss of cerebellar and forebrain inhibitory neurons). Recent studies showed that En2 modulates IGF-1 activity during postnatal cerebellar development. We found that GH mRNA expression was markedly deregulated throughout the neuroendocrine axis in En2−/− mice, as compared to wild-type controls. In mutant mice, GH mRNA levels were significantly increased in the pituitary gland, blood, and liver, whereas decreased levels were detected in the hippocampus. These changes were paralleled by decreased levels of GH protein in the hippocampus but not other tissues of En2−/− mice. IGF-1 mRNA was significantly up-regulated in the liver and down-regulated in the En2−/− hippocampus, but no differences were detected in the levels of IGF-1 protein between the two genotypes. Our data strengthen the notion that altered GH levels in the hippocampus may be involved in learning disabilities associated to ASD.
Scientific Reports | 2018
Gaia Scabia; Ilaria Barone; Marco Mainardi; Giovanni Ceccarini; Manuela Scali; E. Buzzigoli; Alessia Dattilo; Paolo Vitti; Amalia Gastaldelli; Ferruccio Santini; Tommaso Pizzorusso; Lamberto Maffei; Margherita Maffei
Leptin and Brain Derived Neurotrophic Factor (BDNF) pathways are critical players in body weight homeostasis. Noninvasive treatments like environmental stimulation are able to increase response to leptin and induce BDNF expression in the brain. Emerging evidences point to the antidepressant selective serotonin reuptake inhibitor Fluoxetine (FLX) as a drug with effects similar to environmental stimulation. FLX is known to impact on body weight, with mechanisms yet to be elucidated. We herein asked whether FLX affects energy balance, the leptin system and BDNF function. Adult lean male mice chronically treated with FLX showed reduced weight gain, higher energy expenditure, increased sensitivity to acute leptin, increased hypothalamic BDNF expression, associated to changes in white adipose tissue expression typical of “brownization”. In the Ntrk2tm1Ddg/J model, carrying a mutation in the BDNF receptor Tyrosine kinase B (TrkB), these effects are partially or totally reversed. Wild type obese mice treated with FLX showed reduced weight gain, increased energy output, and differently from untreated obese mice, a preserved acute response to leptin in terms of activation of the intracellular leptin transducer STAT3. In conclusion, FLX impacts on energy balance and induces leptin sensitivity and an intact TrkB function is required for these effects to take place.
Neuropharmacology | 2018
Gabriele Sansevero; Laura Baroncelli; Manuela Scali; Alessandro Sale
ABSTRACT Amblyopia is the most common cause of visual impairment in one eye, with a prevalence of 1–5% in the world population. While amblyopia can be efficiently treated in children, it becomes irreversible in adults, due to the decline in neural plasticity past the end of the visual cortex critical period. Accordingly, no pharmacological approaches are available to rescue visual functions in adult amblyopic subjects. We report that non‐invasive intranasal infusion of BDNF increased levels of this neurotrophic factor in V1 and induced a recovery of visual acuity, ocular dominance and visual depth perception in adult amblyopic rats, both in reverse‐occluded animals and in those with unrestricted binocular sight. Visual recovery was long‐lasting, and was prevented by pharmacological blockade of TrkB signaling in the visual cortex. These results underscore the possibility to replace invasive BDNF central administration with a safe procedure of potential interest in a number of currently still cureless central nervous system pathologies. This article is part of the Special Issue entitled “Neurobiology of Environmental Enrichment”. HighlightsIntranasal BDNF rescues visual acuity in adult amblyopic rats.Intranasal BDNF induces recovery of visual depth perception abilities in amblyopic rats.BDNF‐induced rescue is present both with reverse occlusion and normal binocular sight.The beneficial effects of BDNF are prevented by blockade of TrkB signaling in V1.