Marco Mengarelli
Marche Polytechnic University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marco Mengarelli.
International Journal of Life Cycle Assessment | 2017
Marco Mengarelli; Sabrina Neugebauer; Matthias Finkbeiner; Michele Germani; Patrizia Buttol; Francesca Reale
PurposeEnd-of-life (EoL) modelling in life cycle assessment has already been broadly discussed within several studies. However, no consensus has been achieved on how to model recycling in LCA, even though several approaches have been developed. Within this paper, results arising from the application of two new EoL formulas, the product environmental footprint (PEF) and the multi-recycling-approach (MRA) ones, are compared and discussed. Both formulas consider multiple EoL scenarios such as recycling, incineration and landfill.MethodsThe PEF formula has been developed within the PEF programme whose intent is to define a harmonized methodology to evaluate the environmental performance of products. The formula is based on a 50:50 allocation approach, as burdens and benefits associated with recycling are accounted for a 50% rate. The MRA formula has been developed to change focus from products to materials. Recycling cycles and material losses over time are considered with reference to material pools. Allocation between systems is no longer needed, as the actual number of potential life cycles for a certain material is included in the calculation. Both the approaches have been tested within two case studies.Results and discussionMethodological differences could thereof be determined, as well as applicability concerns, due to the type of data required for each formula. As far as the environmental performance is concerned, impacts delivered by MRA are lower than those delivered by PEF for aluminium, while the opposite happens for plastic and rubber due to the higher share of energy recovery accounted in PEF formula. Stainless steel impacts are almost the same.Conclusions and recommendationsThe application of the two formulas provides some inputs for the EoL dilemma in LCA. The use of a wider perspective, better reflecting material properties all over the material life cycle, is of substantial importance to properly represent recycling situations. In MRA, such properties are treated and less data are required compared to the PEF formula. On the contrary, the PEF model better accommodates the modelling of products whose materials, at end of life, can undertake the route of recycling or recovery (or landfill), depending on country-specific EoL management practices. However, its application requires more data.
vehicle power and propulsion conference | 2014
Paolo Cicconi; Michele Germani; Daniele Landi; Marco Mengarelli
Nowadays, electric vehicles fill a relevant car market share. The Li-Ion batteries currently represent the best solution in term of environmental impact and performance. Thermal management for Li-Ion batteries is a very interesting topic, since high temperatures accelerate degradation rate of a cell and compromise its safety level. The battery thermal modeling can be quite challenging. The proposed approach describes a methodology to simulate different thermal management algorithms in order to obtain an uniform temperature distribution in a Li-Ion battery pack. A test case has been developed where the application of an thermal algorithm has been analyzed through CFD simulations.
international conference on product lifecycle management | 2015
Michele Germani; Fabio Gregori; Andrea Luzi; Marco Mengarelli
To preserve proper growth of the planet, industries have to increase sustainability of produced good according to the compliance and governance regulations for NPD (new product development). Sustainability concerns economical, environmental and social aspects; among these issues, the last theme is the less argued in literature and this paper focuses on the social life cycle assessment of products. One of the crucial aspects of S-LCA, is the definition of impact categories and involved stakeholders. This work, proposes a new S-LCA methodology, according to UNEP/SETAC framework. After the clarification of stakeholders, categories and general notions already known on S-LCA, a test case is shown where the new approach is implemented. In this use case, stakeholders from an Italian product line are analysed, then categories of attribution of social impacts are outlined. The paper offers a step-by-step procedure useful to verify the S-LCA theories currently available on a practical industrial case, defining also weaknesses that might be addressed in future studies.
ieee international energy conference | 2014
Paolo Cicconi; Michele Germani; Daniele Landi; Marco Mengarelli
The present work investigates the economic feasibility of ecological vehicles. The comparison has been developed between traditional vehicles, gasoline and diesel fueled, and green vehicles powered by electric, hybrid or natural gas motors. Nowadays, the vehicle life cycle cost is an important decision criterion used by consumer to buy a car, due to fuel price increasing. Life cycle cost includes purchase cost, operation cost, but also social cost lead to environmental impact regarding production, use and end-of-life phases. The proposed research focuses life cycle cost from consumer side in order to evaluate the economic feasibility, using ecological solutions for transportation in EU. Different use scenarios are proposed, considering different vehicle sizes and mileages, without considering taxes and any governance incentives.
International Journal of Productivity and Quality Management | 2016
Michele Germani; Marco Mandolini; Marco Marconi; Marco Mengarelli; Maura Mengoni; Marta Rossi
The adoption of an eco-design approach is a key challenge for the total quality environmental management (TQEM). Recently, several eco-design methodologies have been presented, but none can be easily integrated in the traditional design process of manufacturing companies. The research presented in this paper aims to define a methodology, called G.EN.ESI, to help designers (especially those ones without a specific know-how on eco-design), during the development of sustainable products. In order to aid designers in the assessment of the environmental and cost impacts of a product, also a set of software tools have been defined. Using such a platform, the designer is supported by a robust workbench to perform all the analyses required to evaluate the product eco-sustainability for each phase of the product lifecycle. This software platform is essential for companies which want to implement the G.EN.ESI methodology without upsetting their own consolidated modus operandi and the internal organisation.
International Conference on Sustainable Design and Manufacturing | 2016
Marco Mengarelli; Sara Cortesi; Patrizia Buttol; Marco Marconi; Francesca Reale
Having environmental indications such as those provided by Life Cycle Assessment (LCA), while designing a product would reduce the time required by the trial-and-error approach resulting from environmental checks only at the end of the process, directing the development towards more sustainable solutions from the beginning. To achieve this, the design and environmental analysis should be more integrated, as well as the respective tools. The project idea discussed in this paper aims to overcome this barrier by defining an XML (eXtensible Markup Language) structure designed to carry Life Cycle Inventory data from Computer Aided Design (CAD) tools to Life Cycle Assessment tool. The idea is to exploit overlapping data between the CAD system and LCA instruments, which are currently not being considered. This process will contribute to the reduction of time required for data input and the amount of mistakes.
vehicle power and propulsion conference | 2013
Paolo Cicconi; Michele Germani; Daniele Landi; Marco Mengarelli
A niche of the electric vehicle market is the electric retrofit of existing vehicles. These updates replace internal combustion engines with high efficiency electric motors and high capacity Li-ion batteries. This market is dominated by mostly small and medium size enterprises that provide tailored solutions to customers. These companies seek to reduce their costs and lead times by using virtual prototyping tools and methods in the main design processes. In this context, our work defines a design methodology to support designers in the definition of cooling systems. As a test case, we analyzed the electric retrofit of a small electric car with a lead-acid battery that was updated to Li-ion technology. We focused on a simulation of the cooling of the battery using a thermal analysis based on the physical parameters of the cell and test bench results. The issue is the evaluation of the heat generated by the electrochemical reactions of lithium ion battery cells. A representative battery module was simulated following the methodological approach. The virtual prototyping analysis was divided into two levels: the thermal simulation of a single cell, and the computational fluid dynamics (CFD) analysis of a battery module composed of LiFePO4 prismatic cells. The geometric and fluid dynamic parameters were investigated with a CFD solver to study the cooling performance. A cooling system configuration was proposed and analyzed using the virtual prototyping tools.
Journal of Industrial Information Integration | 2017
Margherita Peruzzini; Fabio Gregori; Andrea Luzi; Marco Mengarelli; Michele Germani
Procedia CIRP | 2017
Marco Marconi; Claudio Favi; Michele Germani; Marco Mandolini; Marco Mengarelli
Procedia CIRP | 2016
Marco Mengarelli; Marco Marconi; Michele Germani