Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marco Ragusa is active.

Publication


Featured researches published by Marco Ragusa.


Molecular Cancer Therapeutics | 2010

Specific Alterations of MicroRNA Transcriptome and Global Network Structure in Colorectal Carcinoma after Cetuximab Treatment

Marco Ragusa; Alessandra Majorana; Luisa Statello; Marco Maugeri; Loredana Salito; Davide Barbagallo; Maria Rosa Guglielmino; Laura R Duro; Rosario Angelica; Rosario Caltabiano; Antonio Biondi; Maria Di Vita; Giuseppe Privitera; Marina Scalia; Alessandro Cappellani; Enrico Vasquez; Salvatore Lanzafame; Francesco Basile; Cinzia Di Pietro; Michele Purrello

The relationship between therapeutic response and modifications of microRNA (miRNA) transcriptome in colorectal cancer (CRC) remains unknown. We investigated this issue by profiling the expression of 667 miRNAs in 2 human CRC cell lines, one sensitive and the other resistant to cetuximab (Caco-2 and HCT-116, respectively), through TaqMan real-time PCR. Caco-2 and HCT-116 expressed different sets of miRNAs after treatment. Specifically, 21 and 22 miRNAs were differentially expressed in Caco-2 or HCT-116, respectively (t test, P < 0.01). By testing the expression of differentially expressed miRNAs in CRC patients, we found that miR-146b-3p and miR-486-5p are more abundant in K-ras–mutated samples with respect to wild-type ones (Wilcoxon test, P < 0.05). Sixty-seven percent of differentially expressed miRNAs were involved in cancer, including CRC, whereas 19 miRNA targets had been previously reported to be involved in the cetuximab pathway and CRC. We identified 25 transcription factors putatively controlling these miRNAs, 11 of which have been already reported to be involved in CRC. On the basis of these data, we suggest that the downregulation of let-7b and let-7e (targeting K-ras) and the upregulation of miR-17* (a CRC marker) could be considered as candidate molecular markers of cetuximab resistance. Global network functional analysis (based on miRNA targets) showed a significant overrepresentation of cancer-related biological processes and networks centered on critical nodes involved in epidermal growth factor receptor internalization and ubiquitin-mediated degradation. The identification of miRNAs, whose expression is linked to the efficacy of therapy, should allow the ability to predict the response of patients to treatment and possibly lead to a better understanding of the molecular mechanisms of drug response. Mol Cancer Ther; 9(12); 3396–409.


Frontiers in Cellular Neuroscience | 2014

Identification of circulating microRNAs for the differential diagnosis of Parkinson's disease and Multiple System Atrophy

Annamaria Vallelunga; Marco Ragusa; Stefania Di Mauro; Tommaso Iannitti; Manuela Pilleri; Roberta Biundo; Luca Weis; Cinzia Di Pietro; Angela De Iuliis; Alessandra Nicoletti; Mario Zappia; Michele Purrello; Angelo Antonini

Background: Parkinsons disease (PD) is a progressive neurodegenerative disorder which may be misdiagnosed with atypical conditions such as Multiple System Atrophy (MSA), due to overlapping clinical features. MicroRNAs (miRNAs) are small non-coding RNAs with a key role in post-transcriptional gene regulation. We hypothesized that identification of a distinct set of circulating miRNAs (cmiRNAs) could distinguish patients affected by PD from MSA and healthy individuals. Results. Using TaqMan Low Density Array technology, we analyzed 754 miRNAs and found 9 cmiRNAs differentially expressed in PD and MSA patients compared to healthy controls. We also validated a set of 4 differentially expressed cmiRNAs in PD and MSA patients vs. controls. More specifically, miR-339-5p was downregulated, whereas miR-223*, miR-324-3p, and mir-24 were upregulated in both diseases. We found cmiRNAs specifically deregulated in PD (downregulation of miR-30c and miR-148b) and in MSA (upregulation of miR-148b). Finally, comparing MSA and PD, we identified 3 upregulated cmiRNAs in MSA serum (miR-24, miR-34b, miR-148b). Conclusions. Our results suggest that cmiRNA signatures discriminate PD from MSA patients and healthy controls and may be considered specific, non-invasive biomarkers for differential diagnosis.


Journal of Molecular Medicine | 2012

Specific alterations of the microRNA transcriptome and global network structure in colorectal cancer after treatment with MAPK/ERK inhibitors

Marco Ragusa; Luisa Statello; Marco Maugeri; Alessandra Majorana; Davide Barbagallo; Loredana Salito; Mariangela Sammito; Manuela Santonocito; Rosario Angelica; Andrea Cavallaro; Marina Scalia; Rosario Caltabiano; Giuseppe Privitera; Antonio Biondi; Maria Di Vita; Alessandro Cappellani; Enrico Vasquez; Salvatore Lanzafame; Elisabetta Tendi; Salvatore Celeste; Cinzia Di Pietro; Francesco Basile; Michele Purrello

The mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway has a master control role in various cancer-related biological processes as cell growth, proliferation, differentiation, migration, and apoptosis. It also regulates many transcription factors that control microRNAs (miRNAs) and their biosynthetic machinery. To investigate on the still poorly characterised global involvement of miRNAs within the pathway, we profiled the expression of 745 miRNAs in three colorectal cancer (CRC) cell lines after blocking the pathway with three different inhibitors. This allowed the identification of two classes of post-treatment differentially expressed (DE) miRNAs: (1) common DE miRNAs in all CRC lines after treatment with a specific inhibitor (class A); (2) DE miRNAs in a single CRC line after treatment with all three inhibitors (class B). By determining the molecular targets, biological roles, network position of chosen miRNAs from class A (miR-372, miR-663b, miR-1226*) and class B (miR-92a-1*, miR-135b*, miR-720), we experimentally demonstrated that they are involved in cell proliferation, migration, apoptosis, and globally affect the regulation circuits centred on MAPK/ERK signaling. Interestingly, the levels of miR-92a-1*, miR-135b*, miR-372, miR-720 are significantly higher in biopsies from CRC patients than in normal controls; they also are significantly higher in CRC patients with mutated KRAS than in those with wild-type genotypes (Wilcoxon test, p < 0.05): the latter could be a downstream effect of ERK pathway overactivation, triggered by KRAS mutations. Finally, our functional data strongly suggest the following miRNA/target pairs: miR-92a-1*/PTEN-SOCS5; miR-135b*/LATS2; miR-372/TXNIP; miR-663b/CCND2. Altogether, these results contribute to deepen current knowledge on still uncharacterized features of MAPK/ERK pathway, pinpointing new oncomiRs in CRC and allowing their translation into clinical practice and CRC therapy.


Fertility and Sterility | 2014

Molecular characterization of exosomes and their microRNA cargo in human follicular fluid: bioinformatic analysis reveals that exosomal microRNAs control pathways involved in follicular maturation.

Manuela Santonocito; Marilena Vento; Maria Rosa Guglielmino; Rosalia Battaglia; Jessica Wahlgren; Marco Ragusa; Davide Barbagallo; Placido Borzì; Simona Rizzari; Marco Maugeri; Paolo Scollo; Carla Tatone; Hadi Valadi; Michele Purrello; Cinzia Di Pietro

OBJECTIVE To characterize well-represented microRNAs in human follicular fluid (FF) and to ascertain whether they are cargo of FF exosomes and whether they are involved in the regulation of follicle maturation. DESIGN FF exosomes were characterized by nanosight, flow cytometry, and exosome-specific surface markers. Expression microRNA profiles from total and exosomal FF were compared with those from plasma of the same women. SETTING University laboratory and an IVF center. PATIENT(S) Fifteen healthy women who had undergone intracytoplasmic sperm injection. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) TaqMan low-density array to investigate the expression profile of 384 microRNAs; DataAssist and geNorm for endogenous control identification; significance analysis of microarrays to identify differentially expressed microRNAs; nanosight, flow-cytometry, and bioanalyzer for exosome characterization; bioinformatic tools for microRNAs target prediction, gene ontology, and pathway analysis. RESULT(S) We identified 37 microRNAs upregulated in FF as compared with plasma from the same women. Thirty-two were carried by microvesicles that showed the well-characterized exosomal markers CD63 and CD81. These FF microRNAs are involved in critically important pathways for follicle growth and oocyte maturation. Specifically, nine of them target and negatively regulate mRNAs expressed in the follicular microenvironment encoding inhibitors of follicle maturation and meiosis resumption. CONCLUSION(S) This study identified a series of exosomal microRNAs that are highly represented in human FF and are involved in follicular maturation. They could represent noninvasive biomarkers of oocyte quality in assisted reproductive technology.


Cancer Biology & Therapy | 2015

miRNA profiling in vitreous humor, vitreal exosomes and serum from uveal melanoma patients: Pathological and diagnostic implications.

Marco Ragusa; Cristina Barbagallo; Luisa Statello; Rosario Caltabiano; Andrea Russo; Lidia Puzzo; Teresio Avitabile; Antonio Longo; Mario D. Toro; Davide Barbagallo; Hadi Valadi; Cinzia Di Pietro; Michele Purrello; Michele Reibaldi

Uveal melanoma (UM) represents approximately 5–6% of all melanoma diagnoses and up to 50% of patients succumb to their disease. Although several methods are available, accurate diagnosis is not always easily feasible because of potential accidents (e.g., intraocular hemorrhage). Based on the assumption that the profile of circulating miRNAs is often altered in human cancers, we verified whether UM patients showed different vitreous humor (VH) or serum miRNA profiles with respect to healthy controls. By using TaqMan Low Density Arrays, we analyzed 754 miRNAs from VH, vitreal exosomes, and serum of 6 UM patients and 6 healthy donors: our data demonstrated that the UM VH profile was unique and only partially overlapping with that from serum of the same patients. Whereas, 90% of miRNAs were shared between VH and vitreal exosomes, and their alterations in UM were statistically overlapped with those of VH and vitreal exosomes, suggesting that VH alterations could result from exosomal dysregulation. We report 32 miRNAs differentially expressed in UM patients in at least 2 different types of samples analyzed. We validated these data on an independent cohort of 12 UM patients. Most alterations were common to VH and vitreal exosomes (e.g., upregulation of miR-21,-34 a,-146a). Interestingly, miR-146a was upregulated in the serum of UM patients, as well as in serum exosomes. Upregulation of miR-21 and miR-146a was also detected in formalin-fixed, paraffin-embedded UM, suggesting that VH or serum alterations in UM could be the consequence of disregulation arising from tumoral cells. Our findings suggest the possibility to detect in VH and serum of UM patients “diagnostic” miRNAs released by the affected eye: based on this, miR-146a could be considered a potential circulating marker of UM.


American Journal of Reproductive Immunology | 2013

Altered Transcriptional Regulation of Cytokines, Growth Factors, and Apoptotic Proteins in the Endometrium of Infertile Women with Chronic Endometritis

Cinzia Di Pietro; Ettore Cicinelli; Maria Rosa Guglielmino; Marco Ragusa; Marco Farina; Marco Antonio Palumbo; Antonio Cianci

Chronic endometritis (CE) is a poorly investigated and probably underestimated pathology, which may cause abnormal uterine bleeding (AUB), pain, and reproductive failures. Due to undefined symptoms and the normal presence of leukocytes in the endometrial mucosa, diagnosis may be missed. Fluid hysteroscopy is a reliable technique for diagnosing this pathology. Few data exist on the biochemical and paracrine alterations that occur in the endometrium of women diagnosed with CE. The aim of the study was to find molecular modification in endometrium related to CE.


Journal of Molecular Medicine | 2010

MIR152, MIR200B, and MIR338, human positional and functional neuroblastoma candidates, are involved in neuroblast differentiation and apoptosis

Marco Ragusa; Alessandra Majorana; Barbara Banelli; Davide Barbagallo; Luisa Statello; Ida Casciano; Maria Rosa Guglielmino; Laura R Duro; Marina Scalia; Gaetano Magro; Cinzia Di Pietro; Massimo Romani; Michele Purrello

MicroRNAs (MIRs) perform critical regulatory functions within cell networks, both in physiology as well as in pathology. Through the positional gene candidate approach, we have identified three MIRs (MIR152, MIR200B, and MIR338) that are located in regions frequently altered in neuroblastoma (NB) and target mRNAs encoding proteins involved in cell proliferation, neuroblast differentiation, neuroblast migration, and apoptosis. Expression analysis in NB biopsies and NB cell lines showed that these MIRs are dysregulated. We have characterized a CpG island, close to the gene encoding MIR200B and hypermethylated in NB samples, that explains its negative regulation. Expression of MIR152, MIR200B, and MIR338 is specifically modulated in NB cell lines during differentiation and apoptosis. Functional genomic experiments through enforced expression of MIR200B and knockdown of MIR152 resulted in a significant decrease of the invasion activity of SH-SY5Y cells. Reconstruction of a NB network comprising MIR152, MIR200B, and MIR338 allowed us to confirm their role in the control of NB cell stemness and apoptosis: This suggests that altered regulation of these MIRs could have a role in NB pathogenesis by interfering with the molecular mechanisms, which physiologically control differentiation and death of neuroblasts. Accordingly, they could be considered as new NB biomarkers and potential targets of antagomirs or epigenetic therapies.


BMC Genomics | 2013

miR-296-3p, miR-298-5p and their downstream networks are causally involved in the higher resistance of mammalian pancreatic α cells to cytokine-induced apoptosis as compared to β cells

Davide Barbagallo; Salvatore Piro; Angelo Giuseppe Condorelli; Loriana G. Mascali; Francesca Urbano; Nunziatina Parrinello; Adelina Monello; Luisa Statello; Marco Ragusa; Agata Maria Rabuazzo; Cinzia Di Pietro; Francesco Purrello; Michele Purrello

BackgroundThe molecular bases of mammalian pancreatic α cells higher resistance than β to proinflammatory cytokines are very poorly defined. MicroRNAs are master regulators of cell networks, but only scanty data are available on their transcriptome in these cells and its alterations in diabetes mellitus.ResultsThrough high-throughput real-time PCR, we analyzed the steady state microRNA transcriptome of murine pancreatic α (αTC1-6) and β (βTC1) cells: their comparison demonstrated significant differences. We also characterized the alterations of αTC1-6 cells microRNA transcriptome after treatment with proinflammatory cytokines. We focused our study on two microRNAs, miR-296-3p and miR-298-5p, which were: (1) specifically expressed at steady state in αTC1-6, but not in βTC1 or INS-1 cells; (2) significantly downregulated in αTC1-6 cells after treatment with cytokines in comparison to untreated controls. These microRNAs share more targets than expected by chance and were co-expressed in αTC1-6 during a 6–48 h time course treatment with cytokines. The genes encoding them are physically clustered in the murine and human genome. By exploiting specific microRNA mimics, we demonstrated that experimental upregulation of miR-296-3p and miR-298-5p raised the propensity to apoptosis of transfected and cytokine-treated αTC1-6 cells with respect to αTC1-6 cells, treated with cytokines after transfection with scramble molecules. Both microRNAs control the expression of IGF1Rβ, its downstream targets phospho-IRS-1 and phospho-ERK, and TNFα. Our computational analysis suggests that MAFB (a transcription factor exclusively expressed in pancreatic α cells within adult rodent islets of Langerhans) controls the expression of miR-296-3p and miR-298-5p.ConclusionsAltogether, high-throughput microRNA profiling, functional analysis with synthetic mimics and molecular characterization of modulated pathways strongly suggest that specific downregulation of miR-296-3p and miR-298-5p, coupled to upregulation of their targets as IGF1Rβ and TNFα, is a major determinant of mammalian pancreatic α cells resistance to apoptosis induction by cytokines.


Oncotarget | 2016

Dysregulated miR-671-5p / CDR1-AS / CDR1 / VSNL1 axis is involved in glioblastoma multiforme

Davide Barbagallo; Angelo Giuseppe Condorelli; Marco Ragusa; Loredana Salito; Mariangela Sammito; Barbara Banelli; Rosario Caltabiano; Giuseppe Barbagallo; Agata Zappalà; Rosalia Battaglia; Matilde Cirnigliaro; Salvatore Lanzafame; Enrico Vasquez; Rosalba Parenti; Federico Cicirata; Cinzia Di Pietro; Massimo Romani; Michele Purrello

MiR-671-5p is encoded by a gene localized at 7q36.1, a region amplified in human glioblastoma multiforme (GBM), the most malignant brain cancer. To investigate whether expression of miR-671-5p were altered in GBM, we analyzed biopsies from a cohort of forty-five GBM patients and from five GBM cell lines. Our data show significant overexpression of miR-671-5p in both biopsies and cell lines. By exploiting specific miRNA mimics and inhibitors, we demonstrated that miR-671-5p overexpression significantly increases migration and to a less extent proliferation rates of GBM cells. Through a combined in silico and in vitro approach, we identified CDR1-AS, CDR1, VSNL1 as downstream miR-671-5p targets in GBM. Expression of these genes significantly decreased both in GBM biopsies and cell lines and negatively correlated with that of miR-671-5p. Based on our data, we propose that the axis miR-671-5p / CDR1-AS / CDR1 / VSNL1 is functionally altered in GBM cells and is involved in the modification of their biopathological profile.


World Journal of Gastroenterology | 2015

Non-coding landscapes of colorectal cancer

Marco Ragusa; Cristina Barbagallo; Luisa Statello; Angelo Giuseppe Condorelli; Rosalia Battaglia; Lucia Tamburello; Davide Barbagallo; Cinzia Di Pietro; Michele Purrello

For two decades Vogelsteins model has been the paradigm for describing the sequence of molecular changes within protein-coding genes that would lead to overt colorectal cancer (CRC). This model is now too simplistic in the light of recent studies, which have shown that our genome is pervasively transcribed in RNAs other than mRNAs, denominated non-coding RNAs (ncRNAs). The discovery that mutations in genes encoding these RNAs [i.e., microRNAs (miRNAs), long non-coding RNAs, and circular RNAs] are causally involved in cancer phenotypes has profoundly modified our vision of tumour molecular genetics and pathobiology. By exploiting a wide range of different mechanisms, ncRNAs control fundamental cellular processes, such as proliferation, differentiation, migration, angiogenesis and apoptosis: these data have also confirmed their role as oncogenes or tumor suppressors in cancer development and progression. The existence of a sophisticated RNA-based regulatory system, which dictates the correct functioning of protein-coding networks, has relevant biological and biomedical consequences. Different miRNAs involved in neoplastic and degenerative diseases exhibit potential predictive and prognostic properties. Furthermore, the key roles of ncRNAs make them very attractive targets for innovative therapeutic approaches. Several recent reports have shown that ncRNAs can be secreted by cells into the extracellular environment (i.e., blood and other body fluids): this suggests the existence of extracellular signalling mechanisms, which may be exploited by cells in physiology and pathology. In this review, we will summarize the most relevant issues on the involvement of cellular and extracellular ncRNAs in disease. We will then specifically describe their involvement in CRC pathobiology and their translational applications to CRC diagnosis, prognosis and therapy.

Collaboration


Dive into the Marco Ragusa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge