Marco Salvalaglio
University of Milan
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marco Salvalaglio.
Journal of Applied Physics | 2014
Marco Salvalaglio; F. Montalenti
We present a theoretical investigation of plasticity onset and strain relaxation in Ge on Si pillar-like, vertical heterostructures (VHEs). By means of linear elasticity theory solved by Finite Element Methods, we determine the critical thickness hc for the insertion of a 60° dislocation in Si1–xGex/Si VHEs as a function of their lateral extension. Then, we quantify the effect of inserting one or more buffer layers in further delaying plasticity when growing a Ge-pure layer on top of the VHEs. The presence of intermediate layers of suitable Ge content allows for the formation of fully coherent structures up to the micron scale. The optimal thickness of one or multiple buffers to avoid dislocations is also discussed.
Advanced Materials | 2016
Fabio Isa; Marco Salvalaglio; Yadira Arroyo Rojas Dasilva; Mojmír Meduňa; Michael Barget; Arik Jung; Thomas Kreiliger; Giovanni Isella; Rolf Erni; Fabio Pezzoli; E. Bonera; Philippe Niedermann; P. Gröning; F. Montalenti; Hans von Känel
Defect-free mismatched heterostructures on Si substrates are produced by an innovative strategy. The strain relaxation is engineered to occur elastically rather than plastically by combining suitable substrate patterning and vertical crystal growth with compositional grading. Its validity is proven both experimentally and theoretically for the pivotal case of SiGe/Si(001).
ACS Applied Materials & Interfaces | 2015
Marco Salvalaglio; Roberto Bergamaschini; Fabio Isa; Andrea Scaccabarozzi; Giovanni Isella; Rainer Backofen; Axel Voigt; F. Montalenti; Giovanni Capellini; Thomas Schroeder; Hans von Känel; Leo Miglio
The move from dimensional to functional scaling in microelectronics has led to renewed interest toward integration of Ge on Si. In this work, simulation-driven experiments leading to high-quality suspended Ge films on Si pillars are reported. Starting from an array of micrometric Ge crystals, the film is obtained by exploiting their temperature-driven coalescence across nanometric gaps. The merging process is simulated by means of a suitable surface-diffusion model within a phase-field approach. The successful comparison between experimental and simulated data demonstrates that the morphological evolution is driven purely by the lowering of surface-curvature gradients. This allows for fine control over the final morphology to be attained. At fixed annealing time and temperature, perfectly merged films are obtained from Ge crystals grown at low temperature (450 °C), whereas some void regions still persist for crystals grown at higher temperature (500 °C) due to their different initial morphology. The latter condition, however, looks very promising for possible applications. Indeed, scanning tunneling electron microscopy and high-resolution transmission electron microscopy analyses show that, at least during the first stages of merging, the developing film is free from threading dislocations. The present findings, thus, introduce a promising path to integrate Ge layers on Si with a low dislocation density.
Applied Physics Letters | 2014
A. G. Taboada; Thomas Kreiliger; Claudiu V. Falub; Fabio Isa; Marco Salvalaglio; L. Wewior; D. Fuster; M. Richter; E. Uccelli; Philippe Niedermann; Antonia Neels; Fulvio Mancarella; B. Alén; Leo Miglio; Alex Dommann; Giovanni Isella; H. von Känel
We report on the mask-less integration of GaAs crystals several microns in size on patterned Si substrates by metal organic vapor phase epitaxy. The lattice parameter mismatch is bridged by first growing 2-μm-tall intermediate Ge mesas on 8-μm-tall Si pillars by low-energy plasma enhanced chemical vapor deposition. We investigate the morphological evolution of the GaAs crystals towards full pyramids exhibiting energetically stable {111} facets with decreasing Si pillar size. The release of the strain induced by the mismatch of thermal expansion coefficients in the GaAs crystals has been studied by X-ray diffraction and photoluminescence measurements. The strain release mechanism is discussed within the framework of linear elasticity theory by Finite Element Method simulations, based on realistic geometries extracted from scanning electron microscopy images.
ACS Applied Materials & Interfaces | 2016
Gang Niu; Giovanni Capellini; Grzegorz Lupina; Tore Niermann; Marco Salvalaglio; Anna Marzegalli; Markus Andreas Schubert; Peter Zaumseil; Hans Michael Krause; Oliver Skibitzki; Michael Lehmann; F. Montalenti; Ya-Hong Xie; Thomas Schroeder
Dislocation networks are one of the most principle sources deteriorating the performances of devices based on lattice-mismatched heteroepitaxial systems. We demonstrate here a technique enabling fully coherent germanium (Ge) islands selectively grown on nanotip-patterned Si(001) substrates. The silicon (Si)-tip-patterned substrate, fabricated by complementary metal oxide semiconductor compatible nanotechnology, features ∼50-nm-wide Si areas emerging from a SiO2 matrix and arranged in an ordered lattice. Molecular beam epitaxy growths result in Ge nanoislands with high selectivity and having homogeneous shape and size. The ∼850 °C growth temperature required for ensuring selective growth has been shown to lead to the formation of Ge islands of high crystalline quality without extensive Si intermixing (with 91 atom % Ge). Nanotip-patterned wafers result in geometric, kinetic-diffusion-barrier intermixing hindrance, confining the major intermixing to the pedestal region of Ge islands, where kinetic diffusion barriers are, however, high. Theoretical calculations suggest that the thin Si/Ge layer at the interface plays, nevertheless, a significant role in realizing our fully coherent Ge nanoislands free from extended defects especially dislocations. Single-layer graphene/Ge/Si-tip Schottky junctions were fabricated, and thanks to the absence of extended defects in Ge islands, they demonstrate high-performance photodetection characteristics with responsivity of ∼45 mA W(-1) and an Ion/Ioff ratio of ∼10(3).
Journal of Applied Physics | 2016
A. G. Taboada; Mojmír Meduňa; Marco Salvalaglio; Fabio Isa; Thomas Kreiliger; Claudiu V. Falub; E. Barthazy Meier; E. Müller; Leo Miglio; Giovanni Isella; H. von Känel
Monolithic integration of III-V compounds into high density Si integrated circuits is a key technological challenge for the next generation of optoelectronic devices. In this work, we report on the metal organic vapor phase epitaxy growth of strain-free GaAs crystals on Si substrates patterned down to the micron scale. The differences in thermal expansion coefficient and lattice parameter are adapted by a 2-μm-thick intermediate Ge layer grown by low-energy plasma enhanced chemical vapor deposition. The GaAs crystals evolve during growth towards a pyramidal shape, with lateral facets composed of {111} planes and an apex formed by {137} and (001) surfaces. The influence of the anisotropic GaAs growth kinetics on the final morphology is highlighted by means of scanning and transmission electron microscopy measurements. The effect of the Si pattern geometry, substrate orientation, and crystal aspect ratio on the GaAs structural properties was investigated by means of high resolution X-ray diffraction. The th...
Nano Letters | 2015
Scarpellini D; C. Somaschini; Alexey Fedorov; Sergio Bietti; Cesare Frigeri; Grillo; L. Esposito; Marco Salvalaglio; Anna Marzegalli; F. Montalenti; E. Bonera; Medaglia Pg; Stefano Sanguinetti
We present the fabrication of axial InAs/GaAs nanowire heterostructures on silicon with atomically sharp interfaces by molecular beam epitaxy. Our method exploits the crystallization at low temperature, by As supply, of In droplets deposited on the top of GaAs NWs grown by the self-assisted (self-catalyzed) mode. Extensive characterization based on transmission electron microscopy sets an upper limit for the InAs/GaAs interface thickness within few bilayers (≤1.5 nm). A detailed study of elastic/plastic strain relaxation at the interface is also presented, highlighting the role of nanowire lateral free surfaces.
Science Advances | 2017
Meher Naffouti; Rainer Backofen; Marco Salvalaglio; Thomas Bottein; Mario Lodari; Axel Voigt; Thomas David; Abdelmalek Benkouider; Ibtissem Fraj; L. Favre; A. Ronda; I. Berbezier; David Grosso; M. Abbarchi; Monica Bollani
Si-based nanoarchitectures are formed with unprecedented precision and reproducibility via templated dewetting of thin SOI. Dewetting is a ubiquitous phenomenon in nature; many different thin films of organic and inorganic substances (such as liquids, polymers, metals, and semiconductors) share this shape instability driven by surface tension and mass transport. Via templated solid-state dewetting, we frame complex nanoarchitectures of monocrystalline silicon on insulator with unprecedented precision and reproducibility over large scales. Phase-field simulations reveal the dominant role of surface diffusion as a driving force for dewetting and provide a predictive tool to further engineer this hybrid top-down/bottom-up self-assembly method. Our results demonstrate that patches of thin monocrystalline films of metals and semiconductors share the same dewetting dynamics. We also prove the potential of our method by fabricating nanotransfer molding of metal oxide xerogels on silicon and glass substrates. This method allows the novel possibility of transferring these Si-based patterns on different materials, which do not usually undergo dewetting, offering great potential also for microfluidic or sensing applications.
Advances in Physics: X | 2016
Roberto Bergamaschini; Marco Salvalaglio; Rainer Backofen; Axel Voigt; F. Montalenti
Semiconductor heteroepitaxy involves a wealth of qualitatively different, competing phenomena. Examples include three-dimensional island formation, injection of dislocations, mixing between film and substrate atoms. Their relative importance depends on the specific growth conditions, giving rise to a very complex scenario. The need for an optimal control over heteroepitaxial films and/or nanostructures is widespread: semiconductor epitaxy by molecular beam epitaxy or chemical vapour deposition is nowadays exploited also in industrial environments. Simulation models can be precious in limiting the parameter space to be sampled while aiming at films/nanostructures with the desired properties. In order to be appealing (and useful) to an applied audience, such models must yield predictions directly comparable with experimental data. This implies matching typical time scales and sizes, while offering a satisfactory description of the main physical driving forces. It is the aim of the present review to show that continuum models of semiconductor heteroepitaxy evolved significantly, providing a promising tool (even a working tool, in some cases) to comply with the above requirements. Several examples, spanning from the nanometre to the micron scale, are illustrated. Current limitations and future research directions are also discussed. Graphical Abstract
Physical Review E | 2017
Marco Salvalaglio; Axel Voigt; Ken Elder; Rainer Backofen
One of the major difficulties in employing phase-field crystal (PFC) modeling and the associated amplitude (APFC) formulation is the ability to tune model parameters to match experimental quantities. In this work, we address the problem of tuning the defect core and interface energies in the APFC formulation. We show that the addition of a single term to the free-energy functional can be used to increase the solid-liquid interface and defect energies in a well-controlled fashion, without any major change to other features. The influence of the newly added term is explored in two-dimensional triangular and honeycomb structures as well as bcc and fcc lattices in three dimensions. In addition, a finite-element method (FEM) is developed for the model that incorporates a mesh refinement scheme. The combination of the FEM and mesh refinement to simulate amplitude expansion with a new energy term provides a method of controlling microscopic features such as defect and interface energies while simultaneously delivering a coarse-grained examination of the system.