Marco Tarantola
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marco Tarantola.
Nanotoxicology | 2011
Marco Tarantola; Anna Pietuch; David Schneider; Jan Rother; Eva Sunnick; Christina Rosman; Sebastien Pierrat; Carsten Sönnichsen; Joachim Wegener; Andreas Janshoff
Abstract Nanoparticle exposure is monitored by a combination of two label-free and non-invasive biosensor devices which detect cellular shape and viscoelasticity (quartz crystal microbalance), cell motility and the dynamics of epithelial cell-cell contacts (electric cell-substrate impedance sensing). With these tools we have studied the impact of nanoparticle shape on cellular physiology. Gold (Au) nanoparticles coated with CTAB were synthesized and studied in two distinct shapes: Spheres with a diameter of (43 ± 4) nm and rods with a size of (38 ± 7) nm × (17 ± 3) nm. Dose-response experiments were accompanied by conventional cytotoxicity tests as well as fluorescence and dark-field microscopy to visualize the intracellular particle distribution. We found that spherical gold nanoparticles with identical surface functionalization are generally more toxic and more efficiently ingested than rod-shaped particles. We largely attribute the higher toxicity of CTAB-coated spheres as compared to rod-shaped particles to a higher release of toxic CTAB upon intracellular aggregation.
Small | 2012
Christina Rosman; Sebastien Pierrat; Andreas Henkel; Marco Tarantola; David Schneider; Eva Sunnick; Andreas Janshoff; Carsten Sönnichsen
Toxicological effects of nanoparticles are associated with their internalization into cells. Hence, there is a strong need for techniques revealing the interaction between particles and cells as well as quantifying the uptake at the same time. For that reason, herein optical dark-field microscopy is used in conjunction with transmission electron microscopy to investigate the uptake of gold nanoparticles into epithelial cells with respect to shape, stabilizing agent, and surface charge. The number of internalized particles is strongly dependent on the stabilizing agent, but not on the particle shape. A test of metabolic activity shows no direct correlation with the number of internalized particles. Therefore, particle properties besides coating and shape are suspected to contribute to the observed toxicity.
Biochimica et Biophysica Acta | 2011
David Schneider; Marco Tarantola; Andreas Janshoff
The epithelial-to-mesenchymal transition (EMT) is a program of cellular development associated with loss of cell-cell contacts, a decreased cell adhesion and substantial morphological changes. Besides its importance for numerous developmental processes, EMT has also been held responsible for the development and progression of tumors and formation of metastases. The influence of the cytokine transforming growth factor β1 (TGF-β1) induced EMT on structure, migration, cytoskeletal dynamics and long-term correlations of the mammalian epithelial cell lines NMuMG, A549 and MDA-MB231 was investigated with time-resolved impedance analysis. The three cell lines show important differences in concentration dependency, cellular morphology and dynamics upon their response to TGF-β1. A549 cells and the non-tumor mouse epithelial cell line NMuMG show a substantial change in morphology mirrored in stepwise changes of their phenotype upon cytokine treatment. Impedance based measurements of micromotility reveal a complex dynamic response to TGF-β1 exposure which leads to a transient increase in fluctuation amplitude and long-term correlation. These changes in fluctuation amplitude are also detectable for MDA-MB231 cells, whereas the long-term correlation remains unvaried. We were able to distinguish three time domains during EMT. Initially, all cell lines display an increase in micromotion lasting 4 to 9h termed transitional state I. This regime is followed by transitional state II lasting approximately 20 h, where cellular dynamics are diminished and, in case of the NMuMG cell line, a loss of cell-cell contacts occurs. Finally, the transformation into the mesenchymal-like phenotype occurs 24-30 h after exposure to TGF-β1.
Biophysical Journal | 2014
Marius Priebe; Marten Bernhardt; Christoph Blum; Marco Tarantola; Eberhard Bodenschatz; Tim Salditt
We have performed scanning x-ray nanobeam diffraction experiments on single cells of the amoeba Dictyostelium discoideum. Cells have been investigated in 1), freeze-dried, 2), frozen-hydrated (vitrified), and 3), initially alive states. The spatially resolved small-angle x-ray scattering signal shows characteristic streaklike patterns in reciprocal space, which we attribute to fiber bundles of the actomyosin network. From the intensity distributions, an anisotropy parameter can be derived that indicates pronounced local variations within the cell. In addition to nanobeam small-angle x-ray scattering, we have evaluated the x-ray differential phase contrast in view of the projected electron density. Different experimental aspects of the x-ray experiment, sample preparation, and data analysis are discussed. Finally, the x-ray results are correlated with optical microscopy (differential phase contrast and confocal microscopy of mutant strains with fluorescently labeled actin and myosin II), which have been carried out in live and fixed states, including optical microscopy under cryogenic conditions.
Open Biology | 2015
Jan Rother; Claudia Richter; Laura Turco; Fabian Knoch; Ingo Mey; Stefan Luther; Andreas Janshoff; Eberhard Bodenschatz; Marco Tarantola
Electromechanical function of cardiac muscle depends critically on the crosstalk of myocytes with non-myocytes. Upon cardiac fibrosis, fibroblasts translocate into infarcted necrotic tissue and alter their communication capabilities. In the present in vitro study, we determined a multiple parameter space relevant for fibrotic cardiac tissue development comprising the following essential processes: (i) adhesion to substrates with varying elasticity, (ii) dynamics of contractile function, and (iii) electromechanical connectivity. By combining electric cell-substrate impedance sensing (ECIS) with conventional optical microscopy, we could measure the impact of fibroblast–cardiomyocyte ratio on the aforementioned parameters in a non-invasive fashion. Adhesion to electrodes was quantified via spreading rates derived from impedance changes, period analysis allowed us to measure contraction dynamics and modulations of the barrier resistance served as a measure of connectivity. In summary, we claim that: (i) a preferred window for substrate elasticity around 7 kPa for low fibroblast content exists, which is shifted to stiffer substrates with increasing fibroblast fractions. (ii) Beat frequency decreases nonlinearly with increasing fraction of fibroblasts, while (iii) the intercellular resistance increases with a maximal functional connectivity at 75% fibroblasts. For the first time, cardiac cell–cell junction density-dependent connectivity in co-cultures of cardiomyocytes and fibroblasts was quantified using ECIS.
Physical Biology | 2014
Fabian Knoch; Marco Tarantola; Eberhard Bodenschatz; Woulter-Jan Rappel
During spontaneous cell polarization of Dictyostelium discoideum cells, phosphatidylinositol (3,4,5)-triphoshpate (PIP3) and PTEN (phosphatase tensin homolog) have been identified as key signaling molecules which govern the process of polarization in a self-organized manner. Recent experiments have quantified the spatio-temporal dynamics of these signaling components. Surprisingly, it was found that membrane-bound PTEN can be either in a high or low state, that PIP3 waves were initiated in areas lacking PTEN through an excitable mechanism, and that PIP3 was degraded even though the PTEN concentration remained low. Here we develop a reaction-diffusion model that aims to explain these experimental findings. Our model contains bistable dynamics for PTEN, excitable dynamics for PIP3, and postulates the existence of two species of PTEN with different dephosphorylation rates. We show that our model is able to produce results that are in good qualitative agreement with the experiments, suggesting that our reaction-diffusion model underlies the self-organized spatio-temporal patterns observed in experiments.
Nature Cell Biology | 2018
Yekaterina A. Miroshnikova; Huy Quang Le; David Schneider; Torsten Thalheim; Matthias Rübsam; Nadine Bremicker; Julien Polleux; Nadine Kamprad; Marco Tarantola; Irène Wang; Martial Balland; Carien M. Niessen; Joerg Galle; Sara A. Wickström
To establish and maintain organ structure and function, tissues need to balance stem cell proliferation and differentiation rates and coordinate cell fate with position. By quantifying and modelling tissue stress and deformation in the mammalian epidermis, we find that this balance is coordinated through local mechanical forces generated by cell division and delamination. Proliferation within the basal stem/progenitor layer, which displays features of a jammed, solid-like state, leads to crowding, thereby locally distorting cell shape and stress distribution. The resulting decrease in cortical tension and increased cell–cell adhesion trigger differentiation and subsequent delamination, reinstating basal cell layer density. After delamination, cells establish a high-tension state as they increase myosin II activity and convert to E-cadherin-dominated adhesion, thereby reinforcing the boundary between basal and suprabasal layers. Our results uncover how biomechanical signalling integrates single-cell behaviours to couple proliferation, cell fate and positioning to generate a multilayered tissue.Mechanics of epidermal differentiation Miroshnikova et al. find that during embryonic development, epidermal basal layer crowding generates local changes in cell shape, cortical tension, and adhesion that initiate differentiation and delamination
PLOS ONE | 2014
Marco Tarantola; Albert Bae; Danny Fuller; Eberhard Bodenschatz; Wouter-Jan Rappel; William F. Loomis
Vegetative and developed amoebae of Dictyostelium discoideum gain traction and move rapidly on a wide range of substrata without forming focal adhesions. We used two independent assays to quantify cell-substrate adhesion in mutants and in wild-type cells as a function of development. Using a microfluidic device that generates a range of hydrodynamic shear stress, we found that substratum adhesion decreases at least 10 fold during the first 6 hr of development of wild type cells. This result was confirmed using a single-cell assay in which cells were attached to the cantilever of an atomic force probe and allowed to adhere to untreated glass surfaces before being retracted. Both of these assays showed that the decrease in substratum adhesion was dependent on the cAMP receptor CAR1 which triggers development. Vegetative cells missing talin as the result of a mutation in talA exhibited slightly reduced adhesive properties compared to vegetative wild-type cells. In sharp contrast to wild-type cells, however, these talA mutant cells did not show further reduction of adhesion during development such that after 5 hr of development they were significantly more adhesive than developed wild type cells. In addition, both assays showed that substrate adhesion was reduced in 0 hr cells when the actin cytoskeleton was disrupted by latrunculin. Consistent with previous observations, substrate adhesion was also reduced in 0 hr cells lacking the membrane proteins SadA or SibA as the result of mutations in sadA or sibA. However, there was no difference in the adhesion properties between wild type AX3 cells and these mutant cells after 6 hr of development, suggesting that neither SibA nor SadA play an essential role in substratum adhesion during aggregation. Our results provide a quantitative framework for further studies of cell substratum adhesion in Dictyostelium.
PLOS ONE | 2013
Edith Schäfer; Marco Tarantola; Elena Polo; Christian Westendorf; Noriko Oikawa; Eberhard Bodenschatz; Burkhard Geil; Andreas Janshoff
Chemotactic responses of Dictyostelium discoideum cells to periodic self-generated signals of extracellular cAMP comprise a large number of intricate morphological changes on different length scales. Here, we scrutinized chemotaxis of single Dictyostelium discoideum cells under conditions of starvation using a variety of optical, electrical and acoustic methods. Amebas were seeded on gold electrodes displaying impedance oscillations that were simultaneously analyzed by optical video microscopy to relate synchronous changes in cell density, morphology, and distance from the surface to the transient impedance signal. We found that starved amebas periodically reduce their overall distance from the surface producing a larger impedance and higher total fluorescence intensity in total internal reflection fluorescence microscopy. Therefore, we propose that the dominant sources of the observed impedance oscillations observed on electric cell-substrate impedance sensing electrodes are periodic changes of the overall cell-substrate distance of a cell. These synchronous changes of the cell-electrode distance were also observed in the oscillating signal of acoustic resonators covered with amebas. We also found that periodic cell-cell aggregation into transient clusters correlates with changes in the cell-substrate distance and might also contribute to the impedance signal. It turned out that cell-cell contacts as well as cell-substrate contacts form synchronously during chemotaxis of Dictyostelium discoideum cells.
Scientific Reports | 2017
Torben-Tobias Kliesch; Jörn Dietz; Laura Turco; Partho Halder; Elena Polo; Marco Tarantola; Reinhard Jahn; Andreas Janshoff
The large gap in time scales between membrane fusion occurring in biological systems during neurotransmitter release and fusion observed between model membranes has provoked speculations over a large number of possible factors that might explain this discrepancy. One possible reason is an elevated lateral membrane tension present in the presynaptic membrane. We investigated the tension-dependency of fusion using model membranes equipped with a minimal fusion machinery consisting of syntaxin 1, synaptobrevin and SNAP 25. Two different strategies were realized; one based on supported bilayers and the other one employing sessile giant liposomes. In the first approach, isolated patches of planar bilayers derived from giant unilamellar vesicles containing syntaxin 1 and preassembled SNAP 25 (ΔN-complex) were deposited on a dilatable PDMS sheet. In a second approach, lateral membrane tension was controlled through the adhesion of intact giant unilamellar vesicles on a functionalized surface. In both approaches fusion efficiency increases considerably with lateral tension and we identified a threshold tension of 3.4 mN m−1, at which the number of fusion events is increased substantially.