Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marco van Eijk is active.

Publication


Featured researches published by Marco van Eijk.


Journal of Immunology | 2000

Follicular dendritic cells carry MHC class II-expressing microvesicles at their surface

Kristin Denzer; Marco van Eijk; Monique J. Kleijmeer; Eva Jakobson; Cornelis de Groot; Hans J. Geuze

Follicular dendritic cells (FDCs) present in lymphoid follicles play a critical role in germinal center reactions. They trap native Ags in the form of immune complexes providing a source for continuous stimulation of specific B lymphocytes. FDCs have been reported to express MHC class II molecules, suggesting an additional role in the presentation of not only native, but also processed Ag in the form of peptide-loaded MHC class II. Adoptive bone marrow transfer experiments have shown that MHC class II molecules are only passively acquired. Up to now the origin of these MHC class II molecules was not clear. Here we show by cryoimmunogold electron microscopy that MHC class II molecules are not present at the plasma membrane of FDCs. In contrast, microvesicles attached to the FDC surface contain MHC class II and other surface proteins not expressed by FDCs themselves. The size and marker profiles of these microvesicles resemble exosomes. Exosomes, which are secreted internal vesicles from multivesicular endosomes, have been shown earlier to stimulate proliferation of specific T lymphocytes in vitro, but their target in vivo remained a matter of speculation. We demonstrate here that isolated exosomes in vitro bind specifically to FDCs and not to other cell types, suggesting that FDCs might be a physiological target for exosomes.


Diabetes | 2007

Pharmacological Inhibition of Glucosylceramide Synthase Enhances Insulin Sensitivity

Johannes M. F. G. Aerts; Roelof Ottenhoff; Andrew S. Powlson; Aldo Grefhorst; Marco van Eijk; Peter F. Dubbelhuis; Jan Aten; Folkert Kuipers; Mireille J. Serlie; Tom Wennekes; Jaswinder K. Sethi; Stephen O'Rahilly; Hermen S. Overkleeft

A growing body of evidence implicates ceramide and/or its glycosphingolipid metabolites in the pathogenesis of insulin resistance. We have developed a highly specific small molecule inhibitor of glucosylceramide synthase, an enzyme that catalyzes a necessary step in the conversion of ceramide to glycosphingolipids. In cultured 3T3-L1 adipocytes, the iminosugar derivative N-(5′-adamantane-1′-yl-methoxy)-pentyl-1-deoxynojirimycin (AMP-DNM) counteracted tumor necrosis factor-α–induced abnormalities in glycosphingolipid concentrations and concomitantly reversed abnormalities in insulin signal transduction. When administered to mice and rats, AMP-DNM significantly reduced glycosphingolipid but not ceramide concentrations in various tissues. Treatment of ob/ob mice with AMP-DNM normalized their elevated tissue glucosylceramide levels, markedly lowered circulating glucose levels, improved oral glucose tolerance, reduced A1C, and improved insulin sensitivity in muscle and liver. Similarly beneficial metabolic effects were seen in high fat–fed mice and ZDF rats. These findings provide further evidence that glycosphingolipid metabolites of ceramide may be involved in mediating the link between obesity and insulin resistance and that interference with glycosphingolipid biosynthesis might present a novel approach to the therapy of states of impaired insulin action such as type 2 diabetes.


Trends in Immunology | 2001

Death-receptor contribution to the germinal-center reaction

Marco van Eijk; Thierry Defrance; Ana Hennino; Cornelis de Groot

Both helper T cells and follicular dendritic cells play crucial roles in the germinal-center (GC) reaction. One of their key functions is to provide GC B cells with anti-apoptotic signals during their growth, diversification of antibody repertoire and positive selection. Dysregulation of the mechanisms that control B-cell apoptosis in the GC could cause hyperplasia, endanger self-tolerance or impair dramatically the efficiency of the humoral response. This article discusses how the death receptor Fas and components of its signaling machinery contribute to the GC reaction.


PLOS ONE | 2009

Reducing Glycosphingolipid Content in Adipose Tissue of Obese Mice Restores Insulin Sensitivity, Adipogenesis and Reduces Inflammation

Marco van Eijk; Jan Aten; Nora Bijl; Roelof Ottenhoff; Cindy van Roomen; Peter F. Dubbelhuis; Ingar Seeman; Karen Ghauharali-van der Vlugt; Hermen S. Overkleeft; Cynthia Arbeeny; Albert K. Groen; Johannes M. F. G. Aerts

Adipose tissue is a critical mediator in obesity-induced insulin resistance. Previously we have demonstrated that pharmacological lowering of glycosphingolipids and subsequently GM3 by using the iminosugar AMP-DNM, strikingly improves glycemic control. Here we studied the effects of AMP-DNM on adipose tissue function and inflammation in detail to provide an explanation for the observed improved glucose homeostasis. Leptin-deficient obese (LepOb) mice were fed AMP-DNM and its effects on insulin signalling, adipogenesis and inflammation were monitored in fat tissue. We show that reduction of glycosphingolipid biosynthesis in adipose tissue of LepOb mice restores insulin signalling in isolated ex vivo insulin-stimulated adipocytes. We observed improved adipogenesis as the number of larger adipocytes was reduced and expression of genes like peroxisome proliferator-activated receptor (PPAR) γ, insulin responsive glucose transporter (GLUT)-4 and adipsin increased. In addition, we found that adiponectin gene expression and protein were increased by AMP-DNM. As a consequence of this improved function of fat tissue we observed less inflammation, which was characterized by reduced numbers of adipose tissue macrophages (crown-like structures) and reduced levels of the macrophage chemo attractants monocyte-chemoattractant protein-1 (Mcp-1/Ccl2) and osteopontin (OPN). In conclusion, pharmacological lowering of glycosphingolipids by inhibition of glucosylceramide biosynthesis improves adipocyte function and as a consequence reduces inflammation in adipose tissue of obese animals.


European Journal of Immunology | 2007

EMR1, the human homolog of F4/80, is an eosinophil-specific receptor.

Jörg Hamann; Nathalie Koning; Walter Pouwels; Laurien H. Ulfman; Marco van Eijk; Martin Stacey; Hsi-Hsien Lin; Siamon Gordon; Mark J. Kwakkenbos

The EGF‐TM7 F4/80 is a defining marker of murine macrophage populations. Applying flow cytometric analysis using the newly generated mAb A10, and quantitative real‐time PCR, we here report the surprising observation that the human ortholog of F4/80, EGF‐like module containing mucin‐like hormone receptor (EMR)1, is absent on mononuclear phagocytic cells including monocytes, macrophages, and myeloid dendritic cells. Unexpectedly, we found that EMR1 expression is restricted to eosinophilic granulocytes, where expression is overlapping with the eotaxin receptor CCR3 and the immunoglobulin‐like lectin Siglec‐8. Absence on other leukocytes, including basophils, implies that EMR1 is a highly specific marker for eosinophils in humans.


Glia | 2012

Phenotyping primary human microglia: Tight regulation of LPS responsiveness

Jeroen Melief; Nathalie Koning; Karianne G. Schuurman; Martijn D. B. van de Garde; Joost Smolders; Robert M. Hoek; Marco van Eijk; Jörg Hamann; Inge Huitinga

Much is still unknown about mechanisms underlying the phenotypical and functional versatility of human microglia. Therefore, we developed a rapid procedure to isolate pure microglia from postmortem human brain tissue and studied their immediate ex vivo phenotype and responses to key inflammatory mediators. Microglia were isolated, along with macrophages from the choroid plexus by tissue dissociation, density gradient separation, and selection with magnetic microbeads. By flow cytometry, microglia were identified by a CD11b+CD45dim phenotype and a smaller size compared with CD11b+CD45high macrophages. Interestingly, white matter microglia from donors with peripheral inflammation displayed elevated CD45 levels and increased size and granularity, but were still distinct from macrophages. The phenotype of isolated microglia was further specified by absent surface expression of CD14, CD200 receptor, and mannose receptor (MR, CD206), all of which were markedly expressed by macrophages. Microglia stimulated immediately after isolation with LPS and IFNγ failed to upregulate TNFα or CCR7. Notably, responsiveness to LPS and IFNγ was clearly instigated in microglia after overnight preculture, which coincided with a strong upregulation of CD14. Culture of microglia with IL‐4 resulted in the induction of HLA‐DR and CCL18 but not MR, whereas culture with dexamethasone did induce MR, in addition to CD163 and CCL18. In conclusion, this study demonstrates phenotypic changes of microglia associated with peripheral inflammation, and reveals tight regulation of responses to LPS and IFNγ as well as distinct microglial responses to IL‐4 and glucocorticoids. These findings are of high relevance to studies on human microglia functioning in health and disease.


International Review of Cytology-a Survey of Cell Biology | 2006

The biology of the Gaucher cell: The cradle of human chitinases

Anton P. Bussink; Marco van Eijk; G. Herma Renkema; Johannes M. F. G. Aerts; Rolf G. Boot

Gaucher disease (GD) is the most common lysosomal storage disorder and is caused by inherited deficiencies of glucocerebrosidase, the enzyme responsible for the lysosomal breakdown of the lipid glucosylceramide. GD is characterized by the accumulation of pathological, lipid laden macrophages, so-called Gaucher cells. Following the development of enzyme replacement therapy for GD, the search for suitable surrogate disease markers resulted in the identification of a thousand-fold increased chitinase activity in plasma from symptomatic Gaucher patients and that decreases upon successful therapeutic intervention. Biochemical investigations identified a single enzyme, named chitotriosidase, to be responsible for this activity. Chitotriosidase was found to be an excellent marker for lipid laden macrophages in Gaucher patients and is now widely used to assist clinical management of patients. In the wake of the identification of chitotriosidase, the presence of other members of the chitinase family in mammals was discovered. Amongst these is AMCase, an enzyme recently implicated in the pathogenesis of asthma. Chitinases are omnipresent throughout nature and are also produced by vertebrates in which they play important roles in defence against chitin-containing pathogens and in food processing.


Journal of Medicinal Chemistry | 2010

Dual-Action Lipophilic Iminosugar Improves Glycemic Control in Obese Rodents by Reduction of Visceral Glycosphingolipids and Buffering of Carbohydrate Assimilation

Tom Wennekes; Alfred J. Meijer; Albert K. Groen; Rolf G. Boot; Johanna E. M. Groener; Marco van Eijk; Roelof Ottenhoff; Nora Bijl; Karen Ghauharali; Hang Song; Tom J. O'shea; Hanlan Liu; Nelson S. Yew; Diane P. Copeland; Richard J. B. H. N. van den Berg; Gijsbert A. van der Marel; Herman S. Overkleeft; Johannes M. F. G. Aerts

The lipophilic iminosugar N-[5-(adamantan-1-ylmethoxy)pentyl]-1-deoxynojirimycin (2, AMP-DNM) potently controls hyperglycemia in obese rodent models of insulin resistance. The reduction of visceral glycosphingolipids by 2 is thought to underlie its beneficial action. It cannot, however, be excluded that concomitant inhibition of intestinal glycosidases and associated buffering of carbohydrate assimilation add to this. To firmly establish the mode of action of 2, we developed a panel of lipophilic iminosugars varying in configuration at C-4/C-5 and N-substitution of the iminosugar. From these we identified the l-ido derivative of 2, l-ido-AMP-DNM (4), as a selective inhibitor of glycosphingolipid synthesis. Compound 4 lowered visceral glycosphingolipids in ob/ob mice and ZDF rats on a par with 2. In contrast to 2, 4 did not inhibit sucrase activity or sucrose assimilation. Treatment with 4 was significantly less effective in reducing blood glucose and HbA1c. We conclude that the combination of reduction of glycosphingolipids in tissue and buffering of carbohydrate assimilation by 2 produces a superior glucose homeostasis.


Journal of Immunology | 2001

Cutting Edge: Cellular Fas-Associated Death Domain-Like IL-1-Converting Enzyme-Inhibitory Protein Protects Germinal Center B Cells from Apoptosis During Germinal Center Reactions

Marco van Eijk; Jan Paul Medema; Cornelis de Groot

During germinal center (GC) reactions, follicular dendritic cells are believed to select memory B lymphocytes by switching off apoptosis in the successfully binding B cells. The cellular signals involved in this process are largely unknown. Here, we show that GC B lymphocytes have a long isoform of the cellular homologue of the viral Fas-associated death domain-like IL-1-converting enzyme-like inhibitory protein (cFLIPL), which is capable of inhibiting death receptor-induced caspase activation. In isolated GC B cells, cFLIPL decays rapidly even without Fas ligation, and this results in activation of caspase activity and apoptosis. Contact with follicular dendritic cells prevents cFLIPL degradation and blocks all signs of apoptosis, even in the presence of anti-Fas Abs. cFLIPL expression is sustained by CD40 ligation as well, suggesting that at least at some stage of the GC reaction activated T cells may help selected B cells to leave the follicular dendritic cell network without becoming apoptotic.


Journal of Innate Immunity | 2009

Expression of the Inhibitory CD200 Receptor Is Associated with Alternative Macrophage Activation

Nathalie Koning; Marco van Eijk; Walter Pouwels; Michael S.M. Brouwer; David Voehringer; Inge Huitinga; Robert M. Hoek; Geert Raes; Jörg Hamann

Classical macrophage activation is inhibited by the CD200 receptor (CD200R). Here, we show that CD200R expression was specifically induced on human in vitro polarized macrophages of the alternatively activated M2a subtype, generated by incubation with IL-4 or IL-13. In mice, peritoneal M2 macrophages, elicited during infection with the parasites Taenia crassiceps or Trypanosoma brucei brucei, expressed increased CD200R levels compared to those derived from uninfected mice. However, in vitrostimulation of mouse peritoneal macrophages and T. crassiceps infection in IL-4–/– and IL-4R–/– mice showed that, in contrast to humans, induction of CD200R in mice was not IL-4 or IL-13 dependent. Our data identify CD200R as a suitable marker for alternatively activated macrophages in humans and corroborate observations of distinct species- and/or site-specific mechanisms regulating macrophage polarization in mouse and man.

Collaboration


Dive into the Marco van Eijk's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan Aten

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar

Rolf G. Boot

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge