Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where nan Marcos is active.

Publication


Featured researches published by nan Marcos.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Bacterial rheotaxis

Marcos; Henry Fu; Thomas R. Powers; Roman Stocker

The motility of organisms is often directed in response to environmental stimuli. Rheotaxis is the directed movement resulting from fluid velocity gradients, long studied in fish, aquatic invertebrates, and spermatozoa. Using carefully controlled microfluidic flows, we show that rheotaxis also occurs in bacteria. Excellent quantitative agreement between experiments with Bacillus subtilis and a mathematical model reveals that bacterial rheotaxis is a purely physical phenomenon, in contrast to fish rheotaxis but in the same way as sperm rheotaxis. This previously unrecognized bacterial taxis results from a subtle interplay between velocity gradients and the helical shape of flagella, which together generate a torque that alters a bacteriums swimming direction. Because this torque is independent of the presence of a nearby surface, bacterial rheotaxis is not limited to the immediate neighborhood of liquid–solid interfaces, but also takes place in the bulk fluid. We predict that rheotaxis occurs in a wide range of bacterial habitats, from the natural environment to the human body, and can interfere with chemotaxis, suggesting that the fitness benefit conferred by bacterial motility may be sharply reduced in some hydrodynamic conditions.


The American Naturalist | 2009

Resource Patch Formation and Exploitation throughout the Marine Microbial Food Web

Justin R. Seymour; Marcos; Roman Stocker

Exploitation of microscale (μm–mm) resource patches by planktonic microorganisms may influence oceanic trophodynamics and nutrient cycling. However, examinations of microbial behavior within patchy microhabitats have been precluded by methodological limitations. We developed a microfluidic device to generate microscale resource patches at environmentally realistic spatiotemporal scales, and we examined the exploitation of these patches by marine microorganisms. We studied the foraging response of three sequential levels of the microbial food web: a phytoplankton (Dunaliella tertiolecta), a heterotrophic bacterium (Pseudoalteromonas haloplanktis), and a phagotrophic protist (Neobodo designis). Population‐level chemotactic responses and single‐cell swimming behaviors were quantified. Dunaliella tertiolecta accumulated within a patch of \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape


Physical Review Letters | 2009

Separation of Microscale Chiral Objects by Shear Flow

Marcos; Henry Fu; Thomas R. Powers; Roman Stocker


Proceedings of the National Academy of Sciences of the United States of America | 2011

Microbial alignment in flow changes ocean light climate

Marcos; Seymour; Mitul Luhar; William M. Durham; James G. Mitchell; Macke A; Roman Stocker

\mathrm{NH}\,^{+}_{4}


Physical Review E | 2017

Traction reveals mechanisms of wall-effects for microswimmers near boundaries

Xinhui Shen; Marcos; Henry Fu


Journal of Visualized Experiments | 2007

Chemotactic response of marine micro-organisms to micro-scale nutrient layers.

Seymour; Marcos; Roman Stocker

\end{document} , simulating a zooplankton excretion, within 1 min of its formation. Pseudoalteromonas haloplanktis cells also exhibited a chemotactic response to patches of D. tertiolecta exudates within 30 s, whereas N. designis shifted swimming behavior in response to bacterial prey patches. Although they relied on different swimming strategies, all three organisms exhibited behaviors that permitted efficient and rapid exploitation of resource patches. These observations imply that microscale nutrient patchiness may subsequently trigger the sequential formation of patches of phytoplankton, heterotrophic bacteria, and protozoan predators in the ocean. Enhanced uptake and predation rates driven by patch exploitation could accelerate carbon flux through the microbial loop.


Limnology and Oceanography-methods | 2006

Microorganisms in vortices: a microfluidic setup

Marcos; Roman Stocker

We show that plane parabolic flow in a microfluidic channel causes nonmotile, helically shaped bacteria to drift perpendicular to the shear plane. Net drift results from the preferential alignment of helices with streamlines, with a direction that depends on the chirality of the helix and the sign of the shear rate. The drift is in good agreement with a model based on resistive force theory, and separation is efficient (>80%) and fast (<2 s). We estimate the effect of Brownian rotational diffusion on chiral separation and show how this method can be extended to separate chiral molecules.


Limnology and Oceanography-methods | 2008

A microfluidic chemotaxis assay to study microbial behavior in diffusing nutrient patches

Justin R. Seymour; Tanvir Ahmed; Marcos; Roman Stocker

The growth of microbial cultures in the laboratory often is assessed informally with a quick flick of the wrist: dense suspensions of microorganisms produce translucent “swirls” when agitated. Here, we rationalize the mechanism behind this phenomenon and show that the same process may affect the propagation of light through the upper ocean. Analogous to the shaken test tubes, the ocean can be characterized by intense fluid motion and abundant microorganisms. We demonstrate that the swirl patterns arise when elongated microorganisms align preferentially in the direction of fluid flow and alter light scattering. Using a combination of experiments and mathematical modeling, we find that this phenomenon can be recurrent under typical marine conditions. Moderate shear rates (0.1 s−1) can increase optical backscattering of natural microbial assemblages by more than 20%, and even small shear rates (0.001 s−1) can increase backscattering from blooms of large phytoplankton by more than 30%. These results imply that fluid flow, currently neglected in models of marine optics, may exert an important control on light propagation, influencing rates of global carbon fixation and how we estimate these rates via remote sensing.


Bulletin of the American Physical Society | 2009

Bacteria swimming in shear

Marcos; Roman Stocker

The influence of a plane boundary on low-Reynolds-number swimmers has frequently been studied using image systems for flow singularities. However, the boundary effect can also be expressed using a boundary integral representation over the traction on the boundary. We show that examining the traction pattern on the boundary caused by a swimmer can yield physical insights into determining when far-field multipole models are accurate. We investigate the swimming velocities and the traction of a three-sphere swimmer initially placed parallel to an infinite planar wall. In the far field, the instantaneous effect of the wall on the swimmer is well approximated by that of a multipole expansion consisting of a force dipole and a force quadrupole. On the other hand, the swimmer close to the wall must be described by a system of singularities reflecting its internal structure. We show that these limits and the transition between them can be independently identified by examining the traction pattern on the wall, either using a quantitative correlation coefficient or by visual inspection. Last, we find that for nonconstant propulsion, correlations between swimming stroke motions and internal positions are important and not captured by time-averaged traction on the wall, indicating that care must be taken when applying multipole expansions to study boundary effects in cases of nonconstant propulsion.


Bulletin of the American Physical Society | 2009

Separation of chiral objects by shear flow in microfluidic channels - Theory

Henry Fu; Marcos; Thomas R. Powers; Roman Stocker

The degree to which planktonic microbes can exploit microscale resource patches will have considerable implications for oceanic trophodynamics and biogeochemical flux. However, to take advantage of nutrient patches in the ocean, swimming microbes must overcome the influences of physical forces including molecular diffusion and turbulent shear, which will limit the availability of patches and the ability of bacteria to locate them. Until recently, methodological limitations have precluded direct examinations of microbial behaviour within patchy habitats and realistic small-scale flow conditions. Hence, much of our current knowledge regarding microbial behaviour in the ocean has been procured from theoretical predictions. To obtain new information on microbial foraging behaviour in the ocean we have applied soft lithographic fabrication techniques to develop 2 microfluidic devices, which we have used to create (i) microscale nutrient patches with dimensions and diffusive characteristics relevant to oceanic processes and (ii) microscale vortices, with shear rates corresponding to those expected in the ocean. These microfluidic devices have permitted a first direct examination of microbial swimming and chemotactic behaviour within a heterogeneous and dynamic seascape. The combined use of epifluorescence and phase contrast microscopy allow direct examinations of the physical dimensions and diffusive characteristics of nutrient patches, while observing the population-level aggregative response, in addition to the swimming behaviour of individual microbes. These experiments have revealed that some species of phytoplankton, heterotrophic bacteria and phagotrophic protists are adept at locating and exploiting diffusing microscale resource patches within very short time frames. We have also shown that up to moderate shear rates, marine bacteria are able to fight the flow and swim through their environment at their own accord. However, beyond a threshold high shear level, bacteria are aligned in the shear flow and are less capable of swimming without disturbance from the flow. Microfluidics represents a novel and inexpensive approach for studying aquatic microbial ecology, and due to its suitability for accurately creating realistic flow fields and substrate gradients at the microscale, is ideally applicable to examinations of microbial behaviour at the smallest scales of interaction. We therefore suggest that microfluidics represents a valuable tool for obtaining a better understanding of the ecology of microorganisms in the ocean.

Collaboration


Dive into the nan Marcos's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Henry Fu

University of Nevada

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mitul Luhar

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Tanvir Ahmed

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge