Marcos Montesano
University of Helsinki
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marcos Montesano.
Molecular Plant-microbe Interactions | 2001
Andres Mäe; Marcos Montesano; Viia Kõiv; E. Tapio Palva
Bacterial pheromones, mainly different homoserine lactones, are central to a number of bacterial signaling processes, including those involved in plant pathogenicity. We previously demonstrated that N-oxoacyl-homoserine lactone (OHL) is essential for quorum sensing in the soft-rot phytopathogen Erwinia carotovora. In this pathogen, OHL controls the coordinate activation of genes encoding the main virulence determinants, extracellular plant cell wall degrading enzymes (PCWDEs), in a cell density-dependent manner. We suggest that E. carotovora employ quorum sensing to avoid the premature production of PCWDEs and subsequent activation of plant defense responses. To test whether modulating this sensory system would affect the outcome of a plant-pathogen interaction, we generated transgenic tobacco, producing OHL. This was accomplished by ectopic expression in tobacco of the E. carotovora gene expI, which is responsible for OHL biosynthesis. We show that expI-positive transgenic tobacco lines produced the active pheromone and partially complemented the avirulent phenotype of expI mutants. The OHL-producing tobacco lines exhibited enhanced resistance to infection by wild-type E. carotovora. The results were confirmed by exogenous addition of OHL to wild-type plants, which also resulted in increased resistance to E. carotovora.
Molecular Plant-microbe Interactions | 1998
Sabina Vidal; Anders R. B. Eriksson; Marcos Montesano; Jürgen Denecke; E. Tapio Palva
The virulence of the plant pathogen Erwinia carotovora subsp. carotovora is dependent on the production and secretion of a large variety of plant cell wall-degrading enzymes, including several pectinases and cellulases. Treatment of tobacco plants with culture filtrates (CFs) from the pathogen (containing the secreted cell wall-degrading enzymes) induces both local and systemic expression of genes involved in plant defense response. We have characterized the contribution of individually produced cell wall-degrading enzymes from E. carotovora subsp. carotovora in their ability to trigger local and systemic induction of a defense-related gene (coding for a basic β-1,3-glucanase) as well as resistance to this pathogen in tobacco. Our results show that mainly pectic enzymes and to some extent one cellulase induce expression of the β-1,3-glucanase gene. Cellulases appear to act cooperatively in the defense gene induction when added in combination with pectic enzymes. Similarly, pectinases and cellulases cooper...
Molecular Plant-microbe Interactions | 2001
Heidi Hyytiäinen; Marcos Montesano; E. Tapio Palva
The production of the main virulence determinants, the extracellular plant cell wall-degrading enzymes, and hence virulence of Erwinia carotovora subsp. carotovora is controlled by a complex regulatory network. One of the global regulators, the response regulator ExpA, a GacA homolog, is required for transcriptional activation of the extracellular enzyme genes of this soft-rot pathogen. To elucidate the mechanism of ExpA control as well as interactions with other regulatory systems, we isolated second-site transposon mutants that would suppress the enzyme-negative phenotype of an expA (gacA) mutant. Inactivation of kdgR resulted in partial restoration of extracellular enzyme production and virulence to the expA mutant, suggesting an interaction between the two regulatory pathways. This interaction was mediated by the RsmA-rsmB system. Northern analysis was used to show that the regulatory rsmB RNA was under positive control of ExpA. Conversely, the expression of rsmA encoding a global repressor was under negative control of ExpA and positive control of KdgR. This study indicates a central role for the RsmA-rsmB regulatory system during pathogenesis, integrating signals from the ExpA (GacA) and KdgR global regulators of extracellular enzyme production in E. carotovora subsp. carotovora.
International Journal of Molecular Sciences | 2013
Inés Ponce de León; Marcos Montesano
During evolution, plants have developed mechanisms to cope with and adapt to different types of stress, including microbial infection. Once the stress is sensed, signaling pathways are activated, leading to the induced expression of genes with different roles in defense. Mosses (Bryophytes) are non-vascular plants that diverged from flowering plants more than 450 million years ago, allowing comparative studies of the evolution of defense-related genes and defensive metabolites produced after microbial infection. The ancestral position among land plants, the sequenced genome and the feasibility of generating targeted knock-out mutants by homologous recombination has made the moss Physcomitrella patens an attractive model to perform functional studies of plant genes involved in stress responses. This paper reviews the current knowledge of inducible defense mechanisms in P. patens and compares them to those activated in flowering plants after pathogen assault, including the reinforcement of the cell wall, ROS production, programmed cell death, activation of defense genes and synthesis of secondary metabolites and defense hormones. The knowledge generated in P. patens together with comparative studies in flowering plants will help to identify key components in plant defense responses and to design novel strategies to enhance resistance to biotic stress.
Molecular Plant Pathology | 2012
Inés Ponce de León; Eric A. Schmelz; Carina Gaggero; Alexandra Castro; Alfonso Alvarez; Marcos Montesano
The moss Physcomitrella patens is an evolutionarily basal model system suitable for the analysis of plant defence responses activated after pathogen assault. Upon infection with the necrotroph Botrytis cinerea, several defence mechanisms are induced in P. patens, including the fortification of the plant cell wall by the incorporation of phenolic compounds and the induced expression of related genes. Botrytis cinerea infection also activates the accumulation of reactive oxygen species and cell death with hallmarks of programmed cell death in moss tissues. Salicylic acid (SA) levels also increase after fungal infection, and treatment with SA enhances transcript accumulation of the defence gene phenylalanine ammonia-lyase (PAL) in P. patens colonies. The expression levels of the genes involved in 12-oxo-phytodienoic acid (OPDA) synthesis, including lipoxygenase (LOX) and allene oxide synthase (AOS), increase in P. patens gametophytes after pathogen assault, together with a rise in free linolenic acid and OPDA concentrations. However, jasmonic acid (JA) could not be detected in healthy or infected tissues of this plant. Our results suggest that, although conserved defence signals, such as SA and OPDA, are synthesized and are probably involved in the defence response of P. patens against B. cinerea infection, JA production appears to be missing. Interestingly, P. patens responds to OPDA and methyl jasmonate by reducing moss colony growth and rhizoid length, suggesting that jasmonate perception is present in mosses. Thus, P. patens can provide clues with regard to the evolution of different defence pathways in plants, including signalling and perception of OPDA and jasmonates in nonflowering and flowering plants.
Molecular Plant Pathology | 2005
Marcos Montesano; Günter Brader; Inés Ponce de León; E. Tapio Palva
SUMMARY Signal pathways involved in Solanum tuberosum-Erwinia carotovora ssp. carotovora(SCC3193) interaction were characterized. To this end, the concentration of several signal molecules implicated in plant defence such as ethylene (ET), jasmonates (JA) and salicylic acid (SA) were measured in potato plants treated by cell-free culture filtrates (CF) from E. c. carotovora(SCC3193). Furthermore, the presence of other potential signalling compounds such as cinnamic acid (CA) and related aromatic compounds was screened in the elicitor-treated plants. The activity of these signal compounds as inducers of defence-related genes such as drd-1 (a defence-related alcohol dehydrogenase), pinII (proteinase inhibitor II), chtB4 (basic chitinase) and chtA2 (acidic chitinase) was characterized. The results demonstrate that ET, JA and CA accumulate in potato tissues in response to CF. These signal molecules were shown to induce differential expression of drd-1, pinII, chtB4 and chtA2. Our data suggest that in addition to ET and JA, CA and possibly other aromatic compounds also may play a role in defence signalling in potato.
Plant Molecular Biology | 2003
Marcos Montesano; Heidi Hyytiäinen; Rodolfo Wettstein; E. Tapio Palva
Identification of Solanum tuberosum genes responsive to culture filtrates (CF) from Erwinia carotovora subsp. carotovora led to the isolation of a full-length cDNA with high sequence similarity to several alcohol dehydrogenases. Accumulation of transcripts corresponding to this defence-related alcohol dehydrogenase (drd-1) was rapidly induced in CF-treated and wounded plants. The gene was also responsive to molecules involved in defence signalling such as salicylic acid, methyl jasmonate and ethylene. To elucidate the biochemical function of DRD-1, its cDNA was expressed in Escherichia coli. Enzymatic assays revealed that DRD-1 is an alcohol:NADP+ oxidoreductase with preference for various aromatic and aliphatic aldehydes. The enzyme exhibited high activity with several aldehydes including 2-methoxybenzaldehyde, 3-methoxybenzaldehyde, salicylaldehyde, o-vanillin, cinnamaldehyde, hydrocinnamaldehyde, hexanal and octanal. Identification of the reaction product by thin-layer chromatography confirmed the reduction of aldehydes to alcohols. Enzymatic activity measured with 2-methoxy-benzaldehyde as a substrate was increased in salicylic acid- or methyl jasmonate-treated plants. These data suggest that DRD-1 may play an important role in potato defence response to Erwinia carotovora.
Journal of Plant Physiology | 2000
Alia Dellagi; Paul R. J. Birch; Jacqueleine Heilbronn; Anna O. Avrova; Marcos Montesano; E. Tapio Palva; Gary D. Lyon
Summary A potato gene, erg-1, was isolated from a cDNA library enriched by suppression subtractive hybridisation for sequences up-regulated one hour after inoculation of cv. Stirling leaves with Erwinia carotovora ssp. atroseptica (Eca). Erg-1 (Eca response gene 1) exhibits strong similarity to phi-1, previously reported to be up-regulated by addition of phosphate to phosphate-starved tobacco cells. Furthermore, erg-1 is similar to families of related genes in tomato, Arabidopsis, and rice, but shows no homology to sequences from animals, fungi, or prokaryotes. Northern analyses showed erg-1 to be tightly regulated and rapidly induced by Eca, and by both compatible and incompatible races of Phytophthora infestans. In addition, erg-1 is up-regulated by treatment with Erwinia carotovora culture filtrate, ethylene and salicylic acid, showing that it is regulated by more than one defence-related signalling pathway.
International Journal of Molecular Sciences | 2015
Guillermo Reboledo; Raquel del Campo; Alfonso Alvarez; Marcos Montesano; Héctor Mara; Inés Ponce de León
The moss Physcomitrella patens is a suitable model plant to analyze the activation of defense mechanisms after pathogen assault. In this study, we show that Colletotrichum gloeosporioides isolated from symptomatic citrus fruit infects P. patens and cause disease symptoms evidenced by browning and maceration of tissues. After C. gloeosporioides infection, P. patens reinforces the cell wall by the incorporation of phenolic compounds and induces the expression of a Dirigent-protein-like encoding gene that could lead to the formation of lignin-like polymers. C. gloeosporioides-inoculated protonemal cells show cytoplasmic collapse, browning of chloroplasts and modifications of the cell wall. Chloroplasts relocate in cells of infected tissues toward the initially infected C. gloeosporioides cells. P. patens also induces the expression of the defense genes PAL and CHS after fungal colonization. P. patens reporter lines harboring the auxin-inducible promoter from soybean (GmGH3) fused to β-glucuronidase revealed an auxin response in protonemal tissues, cauloids and leaves of C. gloeosporioides-infected moss tissues, indicating the activation of auxin signaling. Thus, P. patens is an interesting plant to gain insight into defense mechanisms that have evolved in primitive land plants to cope with microbial pathogens.
Frontiers in Plant Science | 2016
Alfonso Alvarez; Marcos Montesano; Eric A. Schmelz; Inés Ponce de León
Plants have developed complex defense mechanisms to cope with microbial pathogens. Pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) are perceived by pattern recognition receptors (PRRs), leading to the activation of defense. While substantial progress has been made in understanding the activation of plant defense by PAMPs and DAMPs recognition in tracheophytes, far less information exists on related processes in early divergent plants like mosses. The aim of this study was to identify genes that were induced in P. patens in response to elicitors of Pectobacterium carotovorum subsp. carotovorum, using a cDNA suppression subtractive hybridization (SSH) method. A total of 239 unigenes were identified, including genes involved in defense responses related to the shikimate, phenylpropanoid, and oxylipin pathways. The expression levels of selected genes related to these pathways were analyzed using quantitative RT-PCR, confirming their rapid induction by P.c. carotovorum derived elicitors. In addition, P. patens induced cell wall reinforcement after elicitor treatment by incorporation of phenolic compounds, callose deposition, and elevated expression of Dirigent-like encoding genes. Small molecule defense markers and phytohormones such as cinnamic acid, 12-oxo-phytodienoic acid, and auxin levels all increased in elicitor-treated moss tissues. In contrast, salicylic acid levels decreased while abscisic acid levels remained unchanged. P. patens reporter lines harboring an auxin-inducible promoter fused to β-glucuronidase revealed GUS activity in protonemal and gametophores tissues treated with elicitors of P.c. carotovorum, consistent with a localized activation of auxin signaling. These results indicate that P. patens activates the shikimate, phenylpropanoid, oxylipins, and auxin pathways upon treatment with P.c. carotovorum derived elicitors.