Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marcus C. Stensmyr is active.

Publication


Featured researches published by Marcus C. Stensmyr.


Nature | 2008

Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels

Dieter Wicher; Ronny Schäfer; René Bauernfeind; Marcus C. Stensmyr; Regine Heller; Stefan H. Heinemann; Bill S. Hansson

From worm to man, many odorant signals are perceived by the binding of volatile ligands to odorant receptors that belong to the G-protein-coupled receptor (GPCR) family. They couple to heterotrimeric G-proteins, most of which induce cAMP production. This second messenger then activates cyclic-nucleotide-gated ion channels to depolarize the olfactory receptor neuron, thus providing a signal for further neuronal processing. Recent findings, however, have challenged this concept of odorant signal transduction in insects, because their odorant receptors, which lack any sequence similarity to other GPCRs, are composed of conventional odorant receptors (for example, Or22a), dimerized with a ubiquitously expressed chaperone protein, such as Or83b in Drosophila. Or83b has a structure akin to GPCRs, but has an inverted orientation in the plasma membrane. However, G proteins are expressed in insect olfactory receptor neurons, and olfactory perception is modified by mutations affecting the cAMP transduction pathway. Here we show that application of odorants to mammalian cells co-expressing Or22a and Or83b results in non-selective cation currents activated by means of an ionotropic and a metabotropic pathway, and a subsequent increase in the intracellular Ca2+ concentration. Expression of Or83b alone leads to functional ion channels not directly responding to odorants, but being directly activated by intracellular cAMP or cGMP. Insect odorant receptors thus form ligand-gated channels as well as complexes of odorant-sensing units and cyclic-nucleotide-activated non-selective cation channels. Thereby, they provide rapid and transient as well as sensitive and prolonged odorant signalling.


Cell | 2012

A Conserved Dedicated Olfactory Circuit for Detecting Harmful Microbes in Drosophila

Marcus C. Stensmyr; Hany K.M. Dweck; Abu Farhan; Irene Ibba; Antonia Strutz; Latha Mukunda; Jeanine Linz; Veit Grabe; Kathrin Steck; Sofia Lavista-Llanos; Dieter Wicher; Silke Sachse; Markus Knaden; Paul G. Becher; Yoichi Seki; Bill S. Hansson

Flies, like all animals, need to find suitable and safe food. Because the principal food source for Drosophila melanogaster is yeast growing on fermenting fruit, flies need to distinguish fruit with safe yeast from yeast covered with toxic microbes. We identify a functionally segregated olfactory circuit in flies that is activated exclusively by geosmin. This microbial odorant constitutes an ecologically relevant stimulus that alerts flies to the presence of harmful microbes. Geosmin activates only a single class of sensory neurons expressing the olfactory receptor Or56a. These neurons target the DA2 glomerulus and connect to projection neurons that respond exclusively to geosmin. Activation of DA2 is sufficient and necessary for aversion, overrides input from other olfactory pathways, and inhibits positive chemotaxis, oviposition, and feeding. The geosmin detection system is a conserved feature in the genus Drosophila that provides flies with a sensitive, specific means of identifying unsuitable feeding and breeding sites.


Neuron | 2011

Evolution of Insect Olfaction

Bill S. Hansson; Marcus C. Stensmyr

Neuroethology utilizes a wide range of multidisciplinary approaches to decipher neural correlates of natural behaviors associated with an animals ecological niche. By placing emphasis on comparative analyses of adaptive and evolutionary trends across species, a neuroethological perspective is uniquely suited to uncovering general organizational and biological principles that shape the function and anatomy of the nervous system. In this review, we focus on the application of neuroethological principles in the study of insect olfaction and discuss how ecological environment and other selective pressures influence the development of insect olfactory neurobiology, not only informing our understanding of olfactory evolution but also providing broader insights into sensory processing.


Current Biology | 2006

Olfactory shifts parallel superspecialism for toxic fruit in Drosophila melanogaster sibling, D. sechellia

Teun Dekker; Irene Ibba; K.P. Siju; Marcus C. Stensmyr; Bill S. Hansson

Olfaction in the fruit fly Drosophila melanogaster is increasingly understood, from ligand-receptor-neuron combinations to their axonal projection patterns into the antennal lobe . Drosophila thus offers an excellent opportunity to study the evolutionary and ecological dynamics of olfactory systems. We compared the structure and function of the generalist D. melanogaster with that of specialist D. sechellia, which oviposits exclusively on morinda fruit . Our analyses show that whereas the fruits headspace was dominated by acids, antennae responded most strongly to hexanoates. D. sechellia exhibited an extraordinarily strong response to methyl hexanoate (MeHex). Behaviorally, D. sechellia was much more attracted to these morinda fruit volatiles than was D. melanogaster. The high sensitivity to MeHex was paralleled by a 2.5x-3 x overrepresentation of MeHex neurons on the antenna and a concordant 2.9 x increase in volume of the corresponding glomerulus as compared to D. melanogaster. In addition, the MeHex neuron exhibited an extreme sensitivity down to femtograms of its ligand. In contrast, no peripherally mediated shift was found paralleling D. sechellias increased attraction to acids. These findings are a demonstration of evolution acting at several levels in the olfactory circuitry in mediating a fruit flys unique preference for fruit toxic to its sibling species .


The Journal of Experimental Biology | 2003

Novel natural ligands for Drosophila olfactory receptor neurones

Marcus C. Stensmyr; Elena Giordano; Annalisa Balloi; Anna-Maria Angioy; Bill S. Hansson

SUMMARY Due to its well-defined genome, the fruitfly Drosophila melanogaster has become a very important model organism in olfactory research. Despite all the research invested, few natural odour ligands have been identified. By using a combined gas chromatographic—single receptor neurone recording technique (GC—SC), we set out to identify active odour molecules in head space-collected volatiles from preferred food sources, i.e. different overripe or rotting fruit. In total, we performed 101 GC—SC experiments on 85 contacted sensilla. Using GC—mass spectrometry, we identified 24 active compounds. Synthetic samples of these compounds were used to establish dose—response curves for several of the receptor neurone types encountered. The response patterns of individual neurones were repeatable, and neurones were found to reside in stereotyped pairs. In total, we identified eight distinct sensillum types based on response profiles of 12 olfactory receptor neurone types. In most recordings, a single GC peak would produce a strong response, whereas a few other, often chemically related, compounds would produce weaker responses. The GC—SC recordings revealed that the olfactory receptor neurones investigated were often selective and could be divided into distinct functional types with discrete characteristics. Dose—response investigations revealed very low response thresholds to the tested compounds. Six of the novel ligands were also tested for their behavioural effect in a T-maze set up. Of these, five elicited attraction and one elicited repulsion.


Current Biology | 2013

Olfactory Preference for Egg Laying on Citrus Substrates in Drosophila

Hany K.M. Dweck; Shimaa A.M. Ebrahim; Sophie H. Kromann; Deni Bown; Ylva Hillbur; Silke Sachse; Bill S. Hansson; Marcus C. Stensmyr

BACKGROUND Egg-laying animals, such as insects, ensure the survival of their offspring by depositing their eggs in favorable environments. To identify suitable oviposition sites, insects, such as the vinegar fly Drosophila melanogaster, assess a complex range of features. The fly selectively lays eggs in fermenting fruit. However, the precise cues and conditions that trigger oviposition remain unclear, including whether flies are also selective for the fruit substrate itself. RESULTS Here, we demonstrate that flies prefer Citrus fruits as oviposition substrate. Flies detect terpenes characteristic of these fruits via a single class of olfactory sensory neurons, expressing odorant receptor Or19a. These neurons are necessary and sufficient for selective oviposition. In addition, we find that the Citrus preference is an ancestral trait, presumably representing an adaptation toward fruits found within the native African habitat. Moreover, we show that endoparasitoid wasps that parasitize fly larvae are strongly repelled by the smell of Citrus, as well as by valencene, the primary ligand of Or19a. Finally, larvae kept in substrates enriched with valencene suffer a reduced risk of parasitism. CONCLUSIONS Our results demonstrate that a single dedicated olfactory pathway determines oviposition fruit substrate choice. Moreover, our work suggests that the flys fruit preference--reflected in the functional properties of the identified neuron population--stem from a need to escape parasitism from endoparasitoid wasps.


eLife | 2014

Evolution of insect olfactory receptors

Christine Missbach; Hany K.M. Dweck; Heiko Vogel; Andreas Vilcinskas; Marcus C. Stensmyr; Bill S. Hansson; Ewald Grosse-Wilde

The olfactory sense detects a plethora of behaviorally relevant odor molecules; gene families involved in olfaction exhibit high diversity in different animal phyla. Insects detect volatile molecules using olfactory (OR) or ionotropic receptors (IR) and in some cases gustatory receptors (GRs). While IRs are expressed in olfactory organs across Protostomia, ORs have been hypothesized to be an adaptation to a terrestrial insect lifestyle. We investigated the olfactory system of the primary wingless bristletail Lepismachilis y-signata (Archaeognatha), the firebrat Thermobia domestica (Zygentoma) and the neopteran leaf insect Phyllium siccifolium (Phasmatodea). ORs and the olfactory coreceptor (Orco) are with very high probability lacking in Lepismachilis; in Thermobia we have identified three Orco candidates, and in Phyllium a fully developed OR/Orco-based system. We suggest that ORs did not arise as an adaptation to a terrestrial lifestyle, but evolved later in insect evolution, with Orco being present before the appearance of ORs. DOI: http://dx.doi.org/10.7554/eLife.02115.001


Nature | 2011

A natural polymorphism alters odour and DEET sensitivity in an insect odorant receptor

Maurizio Pellegrino; Nicole Steinbach; Marcus C. Stensmyr; Bill S. Hansson; Leslie B. Vosshall

Blood-feeding insects such as mosquitoes are efficient vectors of human infectious diseases because they are strongly attracted by body heat, carbon dioxide and odours produced by their vertebrate hosts. Insect repellents containing DEET (N,N-diethyl-meta-toluamide) are highly effective, but the mechanism by which this chemical wards off biting insects remains controversial despite decades of investigation. DEET seems to act both at close range as a contact chemorepellent, by affecting insect gustatory receptors, and at long range, by affecting the olfactory system. Two opposing mechanisms for the observed behavioural effects of DEET in the gas phase have been proposed: that DEET interferes with the olfactory system to block host odour recognition and that DEET actively repels insects by activating olfactory neurons that elicit avoidance behaviour. Here we show that DEET functions as a modulator of the odour-gated ion channel formed by the insect odorant receptor complex. The functional insect odorant receptor complex consists of a common co-receptor, ORCO (ref. 15) (formerly called OR83B; ref. 16), and one or more variable odorant receptor subunits that confer odour selectivity. DEET acts on this complex to potentiate or inhibit odour-evoked activity or to inhibit odour-evoked suppression of spontaneous activity. This modulation depends on the specific odorant receptor and the concentration and identity of the odour ligand. We identify a single amino-acid polymorphism in the second transmembrane domain of receptor OR59B in a Drosophila melanogaster strain from Brazil that renders OR59B insensitive to inhibition by the odour ligand and modulation by DEET. Our data indicate that natural variation can modify the sensitivity of an odour-specific insect odorant receptor to odour ligands and DEET. Furthermore, they support the hypothesis that DEET acts as a molecular ‘confusant’ that scrambles the insect odour code, and provide a compelling explanation for the broad-spectrum efficacy of DEET against multiple insect species.


Phytochemistry | 2011

Pollination by brood-site deception

Isabella Urru; Marcus C. Stensmyr; Bill S. Hansson

Pollination is often regarded as a mutualistic relationship between flowering plants and insects. In such a relationship, both partners gain a fitness benefit as a result of their interaction. The flower gets pollinated and the insect typically gets a food-related reward. However, flower-insect communication is not always a mutualistic system, as some flowers emit deceitful signals. Insects are thus fooled by irresistible stimuli and pollination is accomplished. Such deception requires very fine tuning, as insects in their typically short life span, try to find mating/feeding breeding sites as efficiently as possible, and following deceitful signals thus is both costly and time-consuming. Deceptive flowers have thus evolved the ability to emit signals that trigger obligate innate or learned responses in the targeted insects. The behavior, and thus the signals, exploited are typically involved in reproduction, from attracting pheromones to brood/food-site cues. Chemical mimicry is one of the main modalities through which flowers trick their pollen vectors, as olfaction plays a pivotal role in insect-insect and insect-plant interactions. Here we focus on floral odors that specifically mimic an oviposition substrate, i.e., brood-site mimicry. The phenomenon is wide spread across unrelated plant lineages of Angiosperm, Splachnaceae and Phallaceae. Targeted insects are mainly beetles and flies, and flowers accordingly often emit, to the human nose, highly powerful and fetid smells that are conversely extremely attractive to the duped insects. Brood-site deceptive plants often display highly elaborate flowers and have evolved a trap-release mechanism. Chemical cues often act in unison with other sensory cues to refine the imitation.


Journal of Comparative Physiology A-neuroethology Sensory Neural and Behavioral Physiology | 2001

Detection of fruit- and flower-emitted volatiles by olfactory receptor neurons in the polyphagous fruit chafer Pachnoda marginata (Coleoptera: Cetoniinae)

Marcus C. Stensmyr; Mattias C. Larsson; Shannon Bice; Bill S. Hansson

Abstract. Olfactory receptor neurons on the antennae of the African fruit chafer species Pachnoda marginata (Coleoptera: Scarabaeidae) were examined through extensive use of gas chromatography linked with electrophysiological recordings from single olfactory receptor neurons. Contacted neurons were stimulated with a large number of extracted volatiles from 22 different fruits and with 64 synthetic plant compounds. Extracted fruit volatiles were identified using linked gas chromatography-mass spectrometry. In total, 48 different odor compounds were found to elicit responses. Analysis of the response spectra of the contacted neurons (n=232) revealed the presence of 28 classes of receptor neurons. The neurons exhibited strong selectivity as well as high sensitivity. Eleven of the identified classes were selectively activated by single compounds, while the remaining were activated by 2–6 compounds. Several receptor neurons that were activated by more than one compound responded to compounds sharing basic structural similarities. The results support the growing hypothesis that a significant proportion of plant-odor receptor neurons in insects are highly sensitive and selective for single odors.

Collaboration


Dive into the Marcus C. Stensmyr's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge