Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marcus Frohme is active.

Publication


Featured researches published by Marcus Frohme.


Biochemical and Biophysical Research Communications | 2002

Cardiac ankyrin repeat protein, a negative regulator of cardiac gene expression, is augmented in human heart failure.

Oliver Zolk; Marcus Frohme; Alexander B. Maurer; Franz Werner Kluxen; Bernd Hentsch; Dimitri Zubakov; Jörg D. Hoheisel; Irving H. Zucker; Salvatore Pepe; Thomas Eschenhagen

The technique of representational difference analysis of cDNA has been applied to screen for differentially expressed genes in a canine model of pacing-induced heart failure. We identified the canine homolog of the cardiac ankyrin repeat protein (CARP) which has been shown to be involved in the regulation of the transcription of cardiac genes. To confirm the significance for human heart failure, cardiac tissue specimens obtained from non-failing donor hearts and from explanted hearts from patients with end-stage heart failure were investigated. CARP mRNA and protein levels were markedly increased in failing left ventricles. Interestingly, alterations in CARP expression were restricted to ventricular tissue and were not observed in atria. Fractionation experiments revealed that CARP was expressed predominantly in the nuclei consistent with the proposed function of CARP as a modulator of transcription. Together, these findings raise the possibility that augmented ventricular CARP expression may play a role in the pathogenesis of human heart failure.


BMC Genomics | 2009

Tardigrade workbench: comparing stress-related proteins, sequence-similar and functional protein clusters as well as RNA elements in tardigrades

Frank Förster; Chunguang Liang; Alexander V. Shkumatov; Daniela Beisser; Julia C. Engelmann; Martina Schnölzer; Marcus Frohme; Tobias Müller; Ralph O. Schill; Thomas Dandekar

BackgroundTardigrades represent an animal phylum with extraordinary resistance to environmental stress.ResultsTo gain insights into their stress-specific adaptation potential, major clusters of related and similar proteins are identified, as well as specific functional clusters delineated comparing all tardigrades and individual species (Milnesium tardigradum, Hypsibius dujardini, Echiniscus testudo, Tulinus stephaniae, Richtersius coronifer) and functional elements in tardigrade mRNAs are analysed. We find that 39.3% of the total sequences clustered in 58 clusters of more than 20 proteins. Among these are ten tardigrade specific as well as a number of stress-specific protein clusters. Tardigrade-specific functional adaptations include strong protein, DNA- and redox protection, maintenance and protein recycling. Specific regulatory elements regulate tardigrade mRNA stability such as lox P DICE elements whereas 14 other RNA elements of higher eukaryotes are not found. Further features of tardigrade specific adaption are rapidly identified by sequence and/or pattern search on the web-tool tardigrade analyzer http://waterbear.bioapps.biozentrum.uni-wuerzburg.de. The work-bench offers nucleotide pattern analysis for promotor and regulatory element detection (tardigrade specific; nrdb) as well as rapid COG search for function assignments including species-specific repositories of all analysed data.ConclusionDifferent protein clusters and regulatory elements implicated in tardigrade stress adaptations are analysed including unpublished tardigrade sequences.


The Journal of Experimental Biology | 2013

Characterization of genome methylation patterns in the desert locust Schistocerca gregaria

Cassandra Falckenhayn; Bart Boerjan; Günther Raddatz; Marcus Frohme; Liliane Schoofs; Frank Lyko

SUMMARY DNA methylation is a widely conserved epigenetic modification. The analysis of genome-scale DNA methylation patterns in various organisms suggests that major features of animal methylomes are widely conserved. However, based on the variation of DNA methyltransferase genes in invertebrates, it has also been proposed that DNA methylation could provide a molecular mechanism for ecological adaptation. We have now analyzed the methylome of the desert locust, Schistocerca gregaria, which represents an organism with a high degree of phenotypic plasticity. Using genome-scale bisulfite sequencing, we show here that the S. gregaria methylome is characterized by CpG- and exon-specific methylation and thus shares two major features with other animal methylomes. In contrast to other invertebrates, however, overall methylation levels were substantially higher and a significant fraction of transposons was methylated. Additionally, genic sequences were densely methylated in a pronounced bimodal pattern, suggesting a role for DNA methylation in the regulation of locust gene expression. Our results thus uncover a unique pattern of genome methylation in locusts and provide an important foundation for investigating the role of DNA methylation in locust phase polyphenism.


PLOS ONE | 2010

Proteomic Analysis of Tardigrades: Towards a Better Understanding of Molecular Mechanisms by Anhydrobiotic Organisms

Elham Schokraie; Agnes Hotz-Wagenblatt; Uwe Warnken; Brahim Mali; Marcus Frohme; Frank Förster; Thomas Dandekar; Steffen Hengherr; Ralph O. Schill; Martina Schnölzer

Background Tardigrades are small, multicellular invertebrates which are able to survive times of unfavourable environmental conditions using their well-known capability to undergo cryptobiosis at any stage of their life cycle. Milnesium tardigradum has become a powerful model system for the analysis of cryptobiosis. While some genetic information is already available for Milnesium tardigradum the proteome is still to be discovered. Principal Findings Here we present to the best of our knowledge the first comprehensive study of Milnesium tardigradum on the protein level. To establish a proteome reference map we developed optimized protocols for protein extraction from tardigrades in the active state and for separation of proteins by high resolution two-dimensional gel electrophoresis. Since only limited sequence information of M. tardigradum on the genome and gene expression level is available to date in public databases we initiated in parallel a tardigrade EST sequencing project to allow for protein identification by electrospray ionization tandem mass spectrometry. 271 out of 606 analyzed protein spots could be identified by searching against the publicly available NCBInr database as well as our newly established tardigrade protein database corresponding to 144 unique proteins. Another 150 spots could be identified in the tardigrade clustered EST database corresponding to 36 unique contigs and ESTs. Proteins with annotated function were further categorized in more detail by their molecular function, biological process and cellular component. For the proteins of unknown function more information could be obtained by performing a protein domain annotation analysis. Our results include proteins like protein member of different heat shock protein families and LEA group 3, which might play important roles in surviving extreme conditions. Conclusions The proteome reference map of Milnesium tardigradum provides the basis for further studies in order to identify and characterize the biochemical mechanisms of tolerance to extreme desiccation. The optimized proteomics workflow will enable application of sensitive quantification techniques to detect differences in protein expression, which are characteristic of the active and anhydrobiotic states of tardigrades.


Applied and Translational Genomics | 2016

Standardization and quality management in next-generation sequencing.

Christoph Endrullat; Jörn Glökler; Philipp Franke; Marcus Frohme

DNA sequencing continues to evolve quickly even after > 30 years. Many new platforms suddenly appeared and former established systems have vanished in almost the same manner. Since establishment of next-generation sequencing devices, this progress gains momentum due to the continually growing demand for higher throughput, lower costs and better quality of data. In consequence of this rapid development, standardized procedures and data formats as well as comprehensive quality management considerations are still scarce. Here, we listed and summarized current standardization efforts and quality management initiatives from companies, organizations and societies in form of published studies and ongoing projects. These comprise on the one hand quality documentation issues like technical notes, accreditation checklists and guidelines for validation of sequencing workflows. On the other hand, general standard proposals and quality metrics are developed and applied to the sequencing workflow steps with the main focus on upstream processes. Finally, certain standard developments for downstream pipeline data handling, processing and storage are discussed in brief. These standardization approaches represent a first basis for continuing work in order to prospectively implement next-generation sequencing in important areas such as clinical diagnostics, where reliable results and fast processing is crucial. Additionally, these efforts will exert a decisive influence on traceability and reproducibility of sequence data.


BMC Biotechnology | 2011

A simple viability analysis for unicellular cyanobacteria using a new autofluorescence assay, automated microscopy, and ImageJ

Katja Schulze; Diana A. Lopez; Ulrich M Tillich; Marcus Frohme

BackgroundCurrently established methods to identify viable and non-viable cells of cyanobacteria are either time-consuming (eg. plating) or preparation-intensive (eg. fluorescent staining). In this paper we present a new and fast viability assay for unicellular cyanobacteria, which uses red chlorophyll fluorescence and an unspecific green autofluorescence for the differentiation of viable and non-viable cells without the need of sample preparation.ResultsThe viability assay for unicellular cyanobacteria using red and green autofluorescence was established and validated for the model organism Synechocystis sp. PCC 6803. Both autofluorescence signals could be observed simultaneously allowing a direct classification of viable and non-viable cells. The results were confirmed by plating/colony count, absorption spectra and chlorophyll measurements. The use of an automated fluorescence microscope and a novel ImageJ based image analysis plugin allow a semi-automated analysis.ConclusionsThe new method simplifies the process of viability analysis and allows a quick and accurate analysis. Furthermore results indicate that a combination of the new assay with absorption spectra or chlorophyll concentration measurements allows the estimation of the vitality of cells.


Cell Stress & Chaperones | 2010

Stress response in tardigrades: differential gene expression of molecular chaperones

Andy Reuner; Steffen Hengherr; Brahim Mali; Frank Förster; Detlev Arndt; Richard Reinhardt; Thomas Dandekar; Marcus Frohme; Franz Brümmer; Ralph O. Schill

Semi-terrestrial tardigrades exhibit a remarkable tolerance to desiccation by entering a state called anhydrobiosis. In this state, they show a strong resistance against several kinds of physical extremes. Because of the probable importance of stress proteins during the phases of dehydration and rehydration, the relative abundance of transcripts coding for two α-crystallin heat-shock proteins (Mt-sHsp17.2 and Mt-sHsp19.5), as well for the heat-shock proteins Mt-sHsp10, Mt-Hsp60, Mt-Hsp70 and Mt-Hsp90, were analysed in active and anhydrobiotic tardigrades of the species Milnesium tardigradum. They were also analysed in the transitional stage (I) of dehydration, the transitional stage (II) of rehydration and in heat-shocked specimens. A variable pattern of expression was detected, with most candidates being downregulated. Gene transcripts of one Mt-hsp70 isoform in the transitional stage I and Mt-hsp90 in the anhydrobiotic stage were significantly upregulated. A high gene expression (778.6-fold) was found for the small α-crystallin heat-shock protein gene Mt-sHsp17.2 after heat shock. We discuss the limited role of the stress-gene expression in the transitional stages between the active and anhydrobiotic tardigrades and other mechanisms which allow tardigrades to survive desiccation.


Diabetes | 2009

Liver-specific Loss of Lipolysis-Stimulated Lipoprotein Receptor Triggers Systemic Hyperlipidemia in mice

Prachiti Narvekar; Mauricio Berriel Diaz; Anja Krones-Herzig; Ulrike Hardeland; Daniela Strzoda; Sigrid Stöhr; Marcus Frohme; Stephan Herzig

OBJECTIVE In mammals, proper storage and distribution of lipids in and between tissues is essential for the maintenance of energy homeostasis. In contrast, aberrantly high levels of triglycerides in the blood (“hypertriglyceridemia”) represent a hallmark of the metabolic syndrome and type 2 diabetes. As hypertriglyceridemia has been identified as an important risk factor for cardiovascular complications, in this study we aimed to identify molecular mechanisms in aberrant triglyceride elevation under these conditions. RESEARCH DESIGN AND METHODS To determine the importance of hepatic lipid handling for systemic dyslipidemia, we profiled the expression patterns of various hepatic lipid transporters and receptors under healthy and type 2 diabetic conditions. A differentially expressed lipoprotein receptor was functionally characterized by generating acute, liver-specific loss- and gain-of-function animal models. RESULTS We show that the hepatic expression of lipid transporter lipolysis-stimulated lipoprotein receptor (LSR) is specifically impaired in mouse models of obesity and type 2 diabetes and can be restored by leptin replacement. Experimental imitation of this pathophysiological situation by liver-specific knockdown of LSR promotes hypertriglyceridemia and elevated apolipoprotein (Apo)B and E serum levels in lean wild-type and ApoE knockout mice. In contrast, genetic restoration of LSR expression in obese animals to wild-type levels improves serum triglyceride levels and serum profiles in these mice. CONCLUSIONS The dysregulation of hepatic LSR under obese and diabetic conditions may provide a molecular rationale for systemic dyslipidemia in type 2 diabetes and the metabolic syndrome and represent a novel target for alternative treatment strategies in these patients.


BMC Genomics | 2010

Transcriptome survey of the anhydrobiotic tardigrade Milnesium tardigradum in comparison with Hypsibius dujardini and Richtersius coronifer

Brahim Mali; Markus A. Grohme; Frank Förster; Thomas Dandekar; Martina Schnölzer; Dirk Reuter; Weronika Wełnicz; Ralph O. Schill; Marcus Frohme

BackgroundThe phenomenon of desiccation tolerance, also called anhydrobiosis, involves the ability of an organism to survive the loss of almost all cellular water without sustaining irreversible damage. Although there are several physiological, morphological and ecological studies on tardigrades, only limited DNA sequence information is available. Therefore, we explored the transcriptome in the active and anhydrobiotic state of the tardigrade Milnesium tardigradum which has extraordinary tolerance to desiccation and freezing. In this study, we present the first overview of the transcriptome of M. tardigradum and its response to desiccation and discuss potential parallels to stress responses in other organisms.ResultsWe sequenced a total of 9984 expressed sequence tags (ESTs) from two cDNA libraries from the eutardigrade M. tardigradum in its active and inactive, anhydrobiotic (tun) stage. Assembly of these ESTs resulted in 3283 putative unique transcripts, whereof ~50% showed significant sequence similarity to known genes. The resulting unigenes were functionally annotated using the Gene Ontology (GO) vocabulary. A GO term enrichment analysis revealed several GOs that were significantly underrepresented in the inactive stage. Furthermore we compared the putative unigenes of M. tardigradum with ESTs from two other eutardigrade species that are available from public sequence databases, namely Richtersius coronifer and Hypsibius dujardini. The processed sequences of the three tardigrade species revealed similar functional content and the M. tardigradum dataset contained additional sequences from tardigrades not present in the other two.ConclusionsThis study describes novel sequence data from the tardigrade M. tardigradum, which significantly contributes to the available tardigrade sequence data and will help to establish this extraordinary tardigrade as a model for studying anhydrobiosis. Functional comparison of active and anhydrobiotic tardigrades revealed a differential distribution of Gene Ontology terms associated with chromatin structure and the translation machinery, which are underrepresented in the inactive animals. These findings imply a widespread metabolic response of the animals on dehydration. The collective tardigrade transcriptome data will serve as a reference for further studies and support the identification and characterization of genes involved in the anhydrobiotic response.


BioTechniques | 2015

Shining a light on LAMP assays' A comparison of LAMP visualization methods including the novel use of berberine

Jens Fischbach; Nina Carolin Xander; Marcus Frohme; Jörn Glökler

The need for simple and effective assays for detecting nucleic acids by isothermal amplification reactions has led to a great variety of end point and real-time monitoring methods. Here we tested direct and indirect methods to visualize the amplification of potato spindle tuber viroid (PSTVd) by loop-mediated isothermal amplification (LAMP) and compared features important for one-pot in-field applications. We compared the performance of magnesium pyrophosphate, hydroxynaphthol blue (HNB), calcein, SYBR Green I, EvaGreen, and berberine. All assays could be used to distinguish between positive and negative samples in visible or UV light. Precipitation of magnesium-pyrophosphate resulted in a turbid reaction solution. The use of HNB resulted in a color change from violet to blue, whereas calcein induced a change from orange to yellow-green. We also investigated berberine as a nucleic acid-specific dye that emits a fluorescence signal under UV light after a positive LAMP reaction. It has a comparable sensitivity to SYBR Green I and EvaGreen. Based on our results, an optimal detection method can be chosen easily for isothermal real-time or end point screening applications.

Collaboration


Dive into the Marcus Frohme's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Markus A. Grohme

Technical University of Applied Sciences Wildau

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jörg D. Hoheisel

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martina Schnölzer

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Weronika Wełnicz

Adam Mickiewicz University in Poznań

View shared research outputs
Top Co-Authors

Avatar

Katja Schulze

Technical University of Applied Sciences Wildau

View shared research outputs
Researchain Logo
Decentralizing Knowledge