Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas Dandekar is active.

Publication


Featured researches published by Thomas Dandekar.


Trends in Biochemical Sciences | 1998

Conservation of gene order: a fingerprint of proteins that physically interact

Thomas Dandekar; Berend Snel; Martijn A. Huynen; Peer Bork

A systematic comparison of nine bacterial and archaeal genomes reveals a low level of gene-order (and operon architecture) conservation. Nevertheless, a number of gene pairs are conserved. The proteins encoded by conserved gene pairs appear to interact physically. This observation can therefore be used to predict functions of, and interactions between, prokaryotic gene products.


Nature Biotechnology | 2000

A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks

Stefan Schuster; David A. Fell; Thomas Dandekar

A set of linear pathways often does not capture the full range of behaviors of a metabolic network. The concept of ‘elementary flux modes’ provides a mathematical tool to define and comprehensively describe all metabolic routes that are both stoichiometrically and thermodynamically feasible for a group of enzymes. We have used this concept to analyze the interplay between the pentose phosphate pathway (PPP) and glycolysis. The set of elementary modes for this system involves conventional glycolysis, a futile cycle, all the modes of PPP function described in biochemistry textbooks, and additional modes that are a priori equally entitled to pathway status. Applications include maximizing product yield in amino acid and antibiotic synthesis, reconstruction and consistency checks of metabolism from genome data, analysis of enzyme deficiencies, and drug target identification in metabolic networks.


intelligent systems in molecular biology | 2008

Identifying functional modules in protein–protein interaction networks

Marcus Dittrich; Gunnar W. Klau; Andreas Rosenwald; Thomas Dandekar; Tobias Müller

Motivation: With the exponential growth of expression and protein–protein interaction (PPI) data, the frontier of research in systems biology shifts more and more to the integrated analysis of these large datasets. Of particular interest is the identification of functional modules in PPI networks, sharing common cellular function beyond the scope of classical pathways, by means of detecting differentially expressed regions in PPI networks. This requires on the one hand an adequate scoring of the nodes in the network to be identified and on the other hand the availability of an effective algorithm to find the maximally scoring network regions. Various heuristic approaches have been proposed in the literature. Results: Here we present the first exact solution for this problem, which is based on integer-linear programming and its connection to the well-known prize-collecting Steiner tree problem from Operations Research. Despite the NP-hardness of the underlying combinatorial problem, our method typically computes provably optimal subnetworks in large PPI networks in a few minutes. An essential ingredient of our approach is a scoring function defined on network nodes. We propose a new additive score with two desirable properties: (i) it is scalable by a statistically interpretable parameter and (ii) it allows a smooth integration of data from various sources. We apply our method to a well-established lymphoma microarray dataset in combination with associated survival data and the large interaction network of HPRD to identify functional modules by computing optimal-scoring subnetworks. In particular, we find a functional interaction module associated with proliferation over-expressed in the aggressive ABC subtype as well as modules derived from non-malignant by-stander cells. Availability: Our software is available freely for non-commercial purposes at http://www.planet-lisa.net. Contact: [email protected]


Gene | 2009

5.8S-28S rRNA interaction and HMM-based ITS2 annotation

Alexander Keller; Tina Schleicher; Jörg Schultz; Tobias Müller; Thomas Dandekar; Matthias Wolf

The internal transcribed spacer 2 (ITS2) of the nuclear ribosomal repeat unit is one of the most commonly applied phylogenetic markers. It is a fast evolving locus, which makes it appropriate for studies at low taxonomic levels, whereas its secondary structure is well conserved, and tree reconstructions are possible at higher taxonomic levels. However, annotation of start and end positions of the ITS2 differs markedly between studies. This is a severe shortcoming, as prediction of a correct secondary structure by standard ab initio folding programs requires accurate identification of the marker in question. Furthermore, the correct structure is essential for multiple sequence alignments based on individual structural features. The present study describes a new tool for the delimitation and identification of the ITS2. It is based on hidden Markov models (HMMs) and verifies annotations by comparison to a conserved structural motif in the 5.8S/28S rRNA regions. Our method was able to identify and delimit the ITS2 in more than 30000 entries lacking start and end annotations in GenBank. Furthermore, 45000 ITS2 sequences with a questionable annotation were re-annotated. Approximately 30000 entries from the ITS2-DB, that uses a homology-based method for structure prediction, were re-annotated. We show that the method is able to correctly annotate an ITS2 as small as 58 nt from Giardia lamblia and an ITS2 as large as 1160 nt from humans. Thus, our method should be a valuable guide during the first and crucial step in any ITS2-based phylogenetic analysis: the delineation of the correct sequence. Sequences can be submitted to the following website for HMM-based ITS2 delineation: http://its2.bioapps.biozentrum.uni-wuerzburg.de.


Nature Reviews Microbiology | 2010

Carbon metabolism of intracellular bacterial pathogens and possible links to virulence

Wolfgang Eisenreich; Thomas Dandekar; Jürgen Heesemann; Werner Goebel

New technologies such as high-throughput methods and 13C-isotopologue-profiling analysis are beginning to provide us with insight into the in vivo metabolism of microorganisms, especially in the host cell compartments that are colonized by intracellular bacterial pathogens. In this Review, we discuss the recent progress made in determining the major carbon sources and metabolic pathways used by model intracellular bacterial pathogens that replicate either in the cytosol or in vacuoles of infected host cells. Furthermore, we highlight the possible links between intracellular carbon metabolism and the expression of virulence genes.


BMC Bioinformatics | 2006

4SALE – A tool for synchronous RNA sequence and secondary structure alignment and editing

Philipp N. Seibel; Tobias Müller; Thomas Dandekar; Jörg Schultz; Matthias Wolf

BackgroundIn sequence analysis the multiple alignment builds the fundament of all proceeding analyses. Errors in an alignment could strongly influence all succeeding analyses and therefore could lead to wrong predictions. Hand-crafted and hand-improved alignments are necessary and meanwhile good common practice. For RNA sequences often the primary sequence as well as a secondary structure consensus is well known, e.g., the cloverleaf structure of the t-RNA. Recently, some alignment editors are proposed that are able to include and model both kinds of information. However, with the advent of a large amount of reliable RNA sequences together with their solved secondary structures (available from e.g. the ITS2 Database), we are faced with the problem to handle sequences and their associated secondary structures synchronously.Results4SALE fills this gap. The application allows a fast sequence and synchronous secondary structure alignment for large data sets and for the first time synchronous manual editing of aligned sequences and their secondary structures. This study describes an algorithm for the synchronous alignment of sequences and their associated secondary structures as well as the main features of 4SALE used for further analyses and editing. 4SALE builds an optimal and unique starting point for every RNA sequence and structure analysis.Conclusion4SALE, which provides an user-friendly and intuitive interface, is a comprehensive toolbox for RNA analysis based on sequence and secondary structure information. The program connects sequence and structure databases like the ITS2 Database to phylogeny programs as for example the CBCAnalyzer. 4SALE is written in JAVA and therefore platform independent. The software is freely available and distributed from the website at http://4sale.bioapps.biozentrum.uni-wuerzburg.de


The EMBO Journal | 1991

Identification of a novel iron-responsive element in murine and human erythroid delta-aminolevulinic acid synthase mRNA.

Thomas Dandekar; R Stripecke; Nicola K. Gray; Britta Goossen; A Constable; H E Johansson; Matthias W. Hentze

Iron‐responsive elements (IREs) are regulatory RNA elements which are characterized by a phylogenetically defined sequence‐structure motif. Their biological function is to provide a specific binding site for the IRE‐binding protein (IRE‐BP). Iron starvation of cells induces high affinity binding of the cytoplasmic IRE‐BP to an IRE which has at least two different known biological consequences, repression of ferritin mRNA translation and stabilization of the transferrin receptor transcript. We report the identification of a novel, evolutionarily conserved IRE motif in the 5′ UTR of murine and human erythroid‐specific delta‐aminolevulinic acid synthase (eALAS) mRNA which encodes the first, and possibly rate limiting, enzyme of the heme biosynthetic pathway. We demonstrate the function of the eALAS IRE as a specific binding site for the IRE‐BP by gel retardation analyses and by in vitro translation experiments. In addition, we show that the 5′ UTR of eALAS mRNA is sufficient to mediate iron‐dependent translational regulation in vivo. These findings strongly suggest involvement of the IRE‐IRE‐BP system in the control of heme biosynthesis during erythroid differentiation.


Microbiology and Molecular Biology Reviews | 2004

Metabolic Interdependence of Obligate Intracellular Bacteria and Their Insect Hosts

Evelyn Zientz; Thomas Dandekar; Roy Gross

SUMMARY Mutualistic associations of obligate intracellular bacteria and insects have attracted much interest in the past few years due to the evolutionary consequences for their genome structure. However, much less attention has been paid to the metabolic ramifications for these endosymbiotic microorganisms, which have to compete with but also to adapt to another metabolism—that of the host cell. This review attempts to provide insights into the complex physiological interactions and the evolution of metabolic pathways of several mutualistic bacteria of aphids, ants, and tsetse flies and their insect hosts.


Bioinformatics | 2002

Exploring the pathway structure of metabolism: decomposition into subnetworks and application to Mycoplasma pneumoniae

Stefan Schuster; Thomas Pfeiffer; Ferdinand Moldenhauer; Ina Koch; Thomas Dandekar

MOTIVATION Reconstructing and analyzing the metabolic map of microorganisms is an important challenge in bioinformatics. Pathway analysis of large metabolic networks meets with the problem of combinatorial explosion of pathways. Therefore, appropriate algorithms for an automated decomposition of these networks into smaller subsystems are needed. RESULTS A decomposition algorithm for metabolic networks based on the local connectivity of metabolites is presented. Interrelations of this algorithm with alternative methods proposed in the literature and the theory of small world networks are discussed. The applicability of our method is illustrated by an analysis of the metabolism of Mycoplasma pneumoniae, which is an organism of considerable medical interest. The decomposition gives rise to 19 subnetworks. Three of these are here discussed in biochemical terms: arginine degradation, the tetrahydrofolate system, and nucleotide metabolism. The interrelations of pathway analysis of biochemical networks with Petri net theory are outlined.


The ISME Journal | 2011

Single-cell genomics reveals the lifestyle of Poribacteria, a candidate phylum symbiotically associated with marine sponges

Alexander Siegl; Janine Kamke; Thomas Hochmuth; Jörn Piel; Michael Richter; Chunguang Liang; Thomas Dandekar; Ute Hentschel

In this study, we present a single-cell genomics approach for the functional characterization of the candidate phylum Poribacteria, members of which are nearly exclusively found in marine sponges. The microbial consortia of the Mediterranean sponge Aplysina aerophoba were singularized by fluorescence-activated cell sorting, and individual microbial cells were subjected to phi29 polymerase-mediated ‘whole-genome amplification’. Pyrosequencing of a single amplified genome (SAG) derived from a member of the Poribacteria resulted in nearly 1.6 Mb of genomic information distributed among 554 contigs analyzed in this study. Approximately two-third of the poribacterial genome was sequenced. Our findings shed light on the functional properties and lifestyle of a possibly ancient bacterial symbiont of marine sponges. The Poribacteria are mixotrophic bacteria with autotrophic CO2-fixation capacities through the Wood–Ljungdahl pathway. The cell wall is of Gram-negative origin. The Poribacteria produce at least two polyketide synthases (PKSs), one of which is the sponge-specific Sup-type PKS. Several putative symbiosis factors such as adhesins (bacterial Ig-like domains, lamininin G domain proteins), adhesin-related proteins (ankyrin, fibronectin type III) and tetratrico peptide repeat domain-encoding proteins were identified, which might be involved in mediating sponge–microbe interactions. The discovery of genes coding for 24-isopropyl steroids implies that certain fossil biomarkers used to date the origins of metazoan life on earth may possibly be of poribacterial origin. Single-cell genomic approaches, such as those shown herein, contribute to a better understanding of beneficial microbial consortia, of which most members are, because of the lack of cultivation, inaccessible by conventional techniques.

Collaboration


Dive into the Thomas Dandekar's collaboration.

Top Co-Authors

Avatar

Meik Kunz

University of Würzburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marcus Frohme

Technical University of Applied Sciences Wildau

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peer Bork

University of Würzburg

View shared research outputs
Researchain Logo
Decentralizing Knowledge