Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marcus M. Seldin is active.

Publication


Featured researches published by Marcus M. Seldin.


Journal of Biological Chemistry | 2012

Myonectin (CTRP15), a novel myokine that links skeletal muscle to systemic lipid homeostasis

Marcus M. Seldin; Jonathan M. Peterson; Mardi S. Byerly; Zhikui Wei; G. William Wong

Background: Skeletal muscle-derived myokines modulate metabolic, inflammatory, and other processes. Results: Myonectin, a novel myokine whose expression and circulating levels are regulated by diet, metabolic state, and exercise, functions to control lipid metabolism. Conclusion: Myonectin is a potential nutrient-responsive metabolic regulator secreted by muscle. Significance: Myonectin links muscle to systemic lipid metabolism via its action on adipocytes and hepatocytes, providing insight into complex tissue cross-talk. Skeletal muscle plays important roles in whole-body glucose and fatty acid metabolism. However, muscle also secretes cytokines and growth factors (collectively termed myokines) that can potentially act in an autocrine, a paracrine, and/or an endocrine manner to modulate metabolic, inflammatory, and other processes. Here, we report the identification and characterization of myonectin, a novel myokine belonging to the C1q/TNF-related protein (CTRP) family. Myonectin transcript was highly induced in differentiated myotubes and predominantly expressed by skeletal muscle. Circulating levels of myonectin were tightly regulated by the metabolic state; fasting suppressed, but refeeding dramatically increased, its mRNA and serum levels. Although mRNA and circulating levels of myonectin were reduced in a diet-induced obese state, voluntary exercise increased its expression and circulating levels. Accordingly, myonectin transcript was up-regulated by compounds (forskolin, epinephrine, ionomycin) that raise cellular cAMP or calcium levels. In vitro, secreted myonectin forms disulfide-linked oligomers, and when co-expressed, forms heteromeric complexes with other members of the C1q/TNF-related protein family. In mice, recombinant myonectin administration reduced circulating levels of free fatty acids without altering adipose tissue lipolysis. Consistent with this, myonectin promoted fatty acid uptake in cultured adipocytes and hepatocytes, in part by up-regulating the expression of genes (CD36, FATP1, Fabp1, and Fabp4) that promote lipid uptake. Collectively, these results suggest that myonectin links skeletal muscle to lipid homeostasis in liver and adipose tissue in response to alterations in energy state, revealing a novel myonectin-mediated metabolic circuit.


Annals of Neurology | 2010

Protective Role of Aquaporin-4 Water Channels after Contusion Spinal Cord Injury

Atsushi Kimura; Mike Hsu; Marcus M. Seldin; A. S. Verkman; Helen E. Scharfman; Devin K. Binder

Spinal cord injury (SCI) is accompanied by disruption of the blood‐spinal cord barrier and subsequent extravasation of fluid and proteins, which results in edema (increased water content) at the site of injury. However, the mechanisms that control edema and the extent to which edema impacts outcome after SCI are not well elucidated.


Genome Biology | 2017

Multi-omics approaches to disease

Yehudit Hasin; Marcus M. Seldin; Aldons J. Lusis

High-throughput technologies have revolutionized medical research. The advent of genotyping arrays enabled large-scale genome-wide association studies and methods for examining global transcript levels, which gave rise to the field of “integrative genetics”. Other omics technologies, such as proteomics and metabolomics, are now often incorporated into the everyday methodology of biological researchers. In this review, we provide an overview of such omics technologies and focus on methods for their integration across multiple omics layers. As compared to studies of a single omics type, multi-omics offers the opportunity to understand the flow of information that underlies disease.


Reviews in Endocrine & Metabolic Disorders | 2014

Metabolic function of the CTRP family of hormones

Marcus M. Seldin; Stefanie Y. Tan; G. William Wong

Maintaining proper energy balance in mammals entails intimate crosstalk between various tissues and organs. These inter-organ communications are mediated, to a great extent, by secreted hormones that circulate in blood. Regulation of the complex metabolic networks by secreted hormones (e.g., insulin, glucagon, leptin, adiponectin, FGF21) constitutes an important mechanism governing the integrated control of whole-body metabolism. Disruption of hormone-mediated metabolic circuits frequently results in dysregulated energy metabolism and pathology. As part of an effort to identify novel metabolic hormones, we recently characterized a highly conserved family of 15 secreted proteins, the C1q/TNF-related proteins (CTRP1-15). While related to adiponectin in sequence and structural organization, each CTRP has its own unique tissue expression profile and non-redundant function in regulating sugar and/or fat metabolism. Here, we summarize the current understanding of the physiological functions of CTRPs, emphasizing their metabolic roles. Future studies using gain-of-function and loss-of-function mouse models will provide greater mechanistic insights into the critical role CTRPs play in regulating systemic energy homeostasis.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2013

CTRP3 attenuates diet-induced hepatic steatosis by regulating triglyceride metabolism

Jonathan M. Peterson; Marcus M. Seldin; Zhikui Wei; Susan Aja; G. William Wong

CTRP3 is a secreted plasma protein of the C1q family that helps regulate hepatic gluconeogenesis and is downregulated in a diet-induced obese state. However, the role of CTRP3 in regulating lipid metabolism has not been established. Here, we used a transgenic mouse model to address the potential function of CTRP3 in ameliorating high-fat diet-induced metabolic stress. Both transgenic and wild-type mice fed a high-fat diet showed similar body weight gain, food intake, and energy expenditure. Despite similar adiposity to wild-type mice upon diet-induced obesity (DIO), CTRP3 transgenic mice were strikingly resistant to the development of hepatic steatosis, had reduced serum TNF-α levels, and demonstrated a modest improvement in systemic insulin sensitivity. Additionally, reduced hepatic triglyceride levels were due to decreased expression of enzymes (GPAT, AGPAT, and DGAT) involved in triglyceride synthesis. Importantly, short-term daily administration of recombinant CTRP3 to DIO mice for 5 days was sufficient to improve the fatty liver phenotype, evident as reduced hepatic triglyceride content and expression of triglyceride synthesis genes. Consistent with a direct effect on liver cells, recombinant CTRP3 treatment reduced fatty acid synthesis and neutral lipid accumulation in cultured rat H4IIE hepatocytes. Together, these results establish a novel role for CTRP3 hormone in regulating hepatic lipid metabolism and highlight its protective function and therapeutic potential in attenuating hepatic steatosis.


Experimental Neurology | 2012

Decreased expression of the glial water channel aquaporin-4 in the intrahippocampal kainic acid model of epileptogenesis.

Darrin J. Lee; Mike S. Hsu; Marcus M. Seldin; Janetta L. Arellano; Devin K. Binder

Recent evidence suggests that astrocytes may be a potential new target for the treatment of epilepsy. The glial water channel aquaporin-4 (AQP4) is expressed in astrocytes, and along with the inwardly-rectifying K(+) channel K(ir)4.1 is thought to underlie the reuptake of H(2)O and K(+) into glial cells during neural activity. Previous studies have demonstrated increased seizure duration and slowed potassium kinetics in AQP4(-/-) mice, and redistribution of AQP4 in hippocampal specimens from patients with chronic epilepsy. However, the regulation and role of AQP4 during epileptogenesis remain to be defined. In this study, we examined the expression of AQP4 and other glial molecules (GFAP, K(ir)4.1, glutamine synthetase) in the intrahippocampal kainic acid (KA) model of epilepsy and compared behavioral and histologic outcomes in wild-type mice vs. AQP4(-/-) mice. Marked and prolonged reduction in AQP4 immunoreactivity on both astrocytic fine processes and endfeet was observed following KA status epilepticus in multiple hippocampal layers. In addition, AQP4(-/-) mice had more spontaneous recurrent seizures than wild-type mice during the first week after KA SE as assessed by chronic video-EEG monitoring and blinded EEG analysis. While both genotypes exhibited similar reactive astrocytic changes, granule cell dispersion and CA1 pyramidal neuron loss, there were an increased number of fluorojade-positive cells early after KA SE in AQP4(-/-) mice. These results indicate a marked reduction of AQP4 following KA SE and suggest that dysregulation of water and potassium homeostasis occurs during early epileptogenesis. Restoration of astrocytic water and ion homeostasis may represent a novel therapeutic strategy.


Cell Metabolism | 2015

Mouse-human experimental epigenetic analysis unmasks dietary targets and genetic liability for diabetic phenotypes.

Michael L Multhaup; Marcus M. Seldin; Andrew E. Jaffe; Xia Lei; Henriette Kirchner; Prosenjit Mondal; Yuanyuan Li; Varenka Rodriguez; Alexander Drong; Mehboob A. Hussain; Cecilia M. Lindgren; Mark I. McCarthy; Erik Näslund; Juleen R. Zierath; G. William Wong; Andrew P. Feinberg

Using a functional approach to investigate the epigenetics of type 2 diabetes (T2D), we combine three lines of evidence-diet-induced epigenetic dysregulation in mouse, epigenetic conservation in humans, and T2D clinical risk evidence-to identify genes implicated in T2D pathogenesis through epigenetic mechanisms related to obesity. Beginning with dietary manipulation of genetically homogeneous mice, we identify differentially DNA-methylated genomic regions. We then replicate these results in adipose samples from lean and obese patients pre- and post-Roux-en-Y gastric bypass, identifying regions where both the location and direction of methylation change are conserved. These regions overlap with 27 genetic T2D risk loci, only one of which was deemed significant by GWAS alone. Functional analysis of genes associated with these regions revealed four genes with roles in insulin resistance, demonstrating the potential general utility of this approach for complementing conventional human genetic studies by integrating cross-species epigenomics and clinical genetic risk.


Neuroscience | 2011

Laminar-specific and developmental expression of aquaporin-4 in the mouse hippocampus

Mike S. Hsu; Marcus M. Seldin; Darrin J. Lee; Gerald Seifert; Christian Steinhäuser; Devin K. Binder

Mice deficient in the water channel aquaporin-4 (AQP4) demonstrate increased seizure duration in response to hippocampal stimulation as well as impaired extracellular K+ clearance. However, the expression of AQP4 in the hippocampus is not well described. In this study, we investigated (i) the developmental, laminar and cell-type specificity of AQP4 expression in the hippocampus; (ii) the effect of Kir4.1 deletion on AQP4 expression; and (iii) performed Western blot and RT-PCR analyses. AQP4 immunohistochemistry on coronal sections from wild-type (WT) or Kir4.1-/- mice revealed a developmentally-regulated and laminar-specific pattern, with highest expression in the CA1 stratum lacunosum-moleculare (SLM) and the molecular layer (ML) of the dentate gyrus (DG). AQP4 was colocalized with the glial markers glial fibrillary acidic protein (GFAP) and S100β in the hippocampus, and was also ubiquitously expressed on astrocytic endfeet around blood vessels. No difference in AQP4 immunoreactivity was observed in Kir4.1-/- mice. Electrophysiological and postrecording RT-PCR analyses of individual cells revealed that AQP4 and Kir4.1 were co-expressed in nearly all CA1 astrocytes. In NG2 cells, AQP4 was also expressed at the transcript level. This study is the first to examine subregional AQP4 expression during development of the hippocampus. The strikingly high expression of AQP4 in the CA1 SLM and DG ML identifies these regions as potential sites of astrocytic K+ and H2O regulation. These results begin to delineate the functional capabilities of hippocampal subregions and cell types for K+ and H2O homeostasis, which is critical to excitability and serves as a potential target for modulation in diverse diseases.


Journal of Biological Chemistry | 2013

C1q/Tumor Necrosis Factor-related Protein 11 (CTRP11), a Novel Adipose Stroma-derived Regulator of Adipogenesis

Zhikui Wei; Marcus M. Seldin; Niranjana Natarajan; David C. Djemal; Jonathan M. Peterson; G. William Wong

Background: CTRP11 is a novel member of the C1q family with poorly defined function. Results: CTRP11 inhibits 3T3-L1 adipocyte differentiation by inhibiting mitotic clonal expansion and adipogenic gene expression. Conclusion: Adipose stroma-derived CTRP11 is a regulator of adipogenesis. Significance: CTRP11 mediates potential paracrine cross-talk between adipocytes and cells of the stromal vascular compartment. C1q/TNF-related proteins (CTRPs) are a family of secreted regulators of glucose and lipid metabolism. Here, we describe CTRP11, a novel and phylogenetically conserved member of the C1q family. Our studies revealed that white and brown adipose are major tissues that express CTRP11, and its expression is acutely regulated by changes in metabolic state. Within white adipose tissue, CTRP11 is primarily expressed by stromal vascular cells. As a secreted multimeric protein, CTRP11 forms disulfide-linked oligomers. Although the conserved N-terminal Cys-28 and Cys-32 are dispensable for the assembly of higher-order oligomeric structures, they are unexpectedly involved in modulating protein secretion. When co-expressed, CTRP11 forms heteromeric complexes with closely related CTRP10, CTRP13, and CRF (CTRP14) via the C-terminal globular domains, combinatorial associations that potentially generate functionally distinct complexes. Functional studies revealed a role for CTRP11 in regulating adipogenesis. Ectopic expression of CTRP11 or exposure to recombinant protein inhibited differentiation of 3T3-L1 adipocytes. The expression of peroxisome proliferator-activated receptor-γ and CAAT/enhancer binding protein-α, which drive the adipogenic gene program, was markedly suppressed by CTRP11. Impaired adipogenesis was caused by a CTRP11-mediated decrease in p42/44-MAPK signaling and inhibition of mitotic clonal expansion, a process essential for adipocyte differentiation in culture. These results implicate CTRP11 as a novel secreted regulator of adipogenesis and highlight the potential paracrine cross-talk between adipocytes and cells of the stromal vascular compartment in maintaining adipose tissue homeostasis.


Journal of Biological Chemistry | 2013

Skeletal muscle-derived myonectin activates the mammalian target of rapamycin (mTOR) pathway to suppress autophagy in liver

Marcus M. Seldin; Xia Lei; Stefanie Y. Tan; Kevin P. Stanson; Zhikui Wei; G. William Wong

Background: Liver autophagy is dynamically regulated in fed and fasted states. Results: Myonectin is secreted by skeletal muscle in response to nutrient availability, and it activates the mTOR signaling pathway to suppress autophagy in liver. Conclusion: Myonectin is a novel regulator of liver autophagy. Significance: Myonectin mediates muscle-liver cross-talk to control energy balance. Cells turn on autophagy, an intracellular recycling pathway, when deprived of nutrients. How autophagy is regulated by hormonal signals in response to major changes in metabolic state is not well understood. Here, we provide evidence that myonectin (CTRP15), a skeletal muscle-derived myokine, is a novel regulator of cellular autophagy. Starvation activated liver autophagy, whereas nutrient supplementation following food deprivation suppressed it; the former and latter correlated with reduced and increased expression and circulating levels of myonectin, respectively, suggestive of a causal link. Indeed, recombinant myonectin administration suppressed starvation-induced autophagy in mouse liver and cultured hepatocytes, as indicated by the inhibition of LC3-dependent autophagosome formation, p62 degradation, and expression of critical autophagy-related genes. Reduction in protein degradation is mediated by the PI3K/Akt/mTOR signaling pathway; inhibition of this pathway abrogated the ability of myonectin to suppress autophagy in cultured hepatocytes. Together, our results reveal a novel skeletal muscle-liver axis controlling cellular autophagy, underscoring the importance of hormone-mediated tissue cross-talk in maintaining energy homeostasis.

Collaboration


Dive into the Marcus M. Seldin's collaboration.

Top Co-Authors

Avatar

G. William Wong

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xia Lei

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Zhikui Wei

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mardi S. Byerly

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Calvin Pan

University of California

View shared research outputs
Top Co-Authors

Avatar

Jonathan M. Peterson

East Tennessee State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mike S. Hsu

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge