Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marcus Nordgren is active.

Publication


Featured researches published by Marcus Nordgren.


Biochimica et Biophysica Acta | 2012

Role of peroxisomes in ROS/RNS-metabolism: Implications for human disease

Marc Fransen; Marcus Nordgren; Bo Wang; Oksana Apanasets

Peroxisomes are cell organelles that play a central role in lipid metabolism. At the same time, these organelles generate reactive oxygen and nitrogen species as byproducts. Peroxisomes also possess intricate protective mechanisms to counteract oxidative stress and maintain redox balance. An imbalance between peroxisomal reactive oxygen species/reactive nitrogen species production and removal may possibly damage biomolecules, perturb cellular thiol levels, and deregulate cellular signaling pathways implicated in a variety of human diseases. Somewhat surprisingly, the potential role of peroxisomes in cellular redox metabolism has been underestimated for a long time. However, in recent years, peroxisomal reactive oxygen species/reactive nitrogen species metabolism and signaling have become the focus of a rapidly evolving and multidisciplinary research field with great prospects. This review is mainly devoted to discuss evidence supporting the notion that peroxisomal metabolism and oxidative stress are intimately interconnected and associated with age-related diseases. We focus on several key aspects of how peroxisomes contribute to cellular reactive oxygen species/reactive nitrogen species levels in mammalian cells and how these cells cope with peroxisome-derived oxidative stress. We also provide a brief overview of recent strategies that have been successfully employed to detect and modulate the peroxisomal redox status. Finally, we highlight some gaps in our knowledge and propose potential avenues for further research. This article is part of a Special Issue entitled: Metabolic Functions and Biogenesis of peroxisomes in Health and Disease.


Biochimie | 2014

Peroxisomal metabolism and oxidative stress

Marcus Nordgren; Marc Fransen

Peroxisomes are ubiquitous and multifunctional organelles that are primarily known for their role in cellular lipid metabolism. As many peroxisomal enzymes catalyze redox reactions as part of their normal function, these organelles are also increasingly recognized as potential regulators of oxidative stress-related signaling pathways. This in turn suggests that peroxisome dysfunction is not only associated with rare inborn errors of peroxisomal metabolism, but also with more common age-related diseases such as neurodegeneration, type 2 diabetes, and cancer. This review intends to provide a comprehensive picture of the complex role of mammalian peroxisomes in cellular redox metabolism. We highlight how peroxisomal metabolism may contribute to the bioavailability of important mediators of oxidative stress, with particular emphasis on reactive oxygen species. In addition, we review the biological properties of peroxisome-derived signaling messengers and discuss how these molecules may mediate various biological responses. Furthermore, we explore the emerging concepts that peroxisomes and mitochondria share an intricate redox-sensitive relationship and cooperate in cell fate decisions. This is particularly relevant to the observed demise of peroxisome function which accompanies cellular senescence, organismal aging, and age-related diseases.


Free Radical Biology and Medicine | 2013

Mitochondria are targets for peroxisome-derived oxidative stress in cultured mammalian cells

Bo Wang; Paul P. Van Veldhoven; Chantal Brees; Noemi Rubio; Marcus Nordgren; Oksana Apanasets; Markus Kunze; Myriam Baes; Patrizia Agostinis; Marc Fransen

Many cellular processes are driven by spatially and temporally regulated redox-dependent signaling events. Although mounting evidence indicates that organelles such as the endoplasmic reticulum and mitochondria can function as signaling platforms for oxidative stress-regulated pathways, little is known about the role of peroxisomes in these processes. In this study, we employ targeted variants of the genetically encoded photosensitizer KillerRed to gain a better insight into the interplay between peroxisomes and cellular oxidative stress. We show that the phototoxic effects of peroxisomal KillerRed induce mitochondria-mediated cell death and that this process can be counteracted by targeted overexpression of a select set of antioxidant enzymes, including peroxisomal glutathione S-transferase kappa 1, superoxide dismutase 1, and mitochondrial catalase. We also present evidence that peroxisomal disease cell lines deficient in plasmalogen biosynthesis or peroxisome assembly are more sensitive to KillerRed-induced oxidative stress than control cells. Collectively, these findings confirm and extend previous observations suggesting that disturbances in peroxisomal redox control and metabolism can sensitize cells to oxidative stress. In addition, they lend strong support to the ideas that peroxisomes and mitochondria share a redox-sensitive relationship and that the redox communication between these organelles is not only mediated by diffusion of reactive oxygen species from one compartment to the other. Finally, these findings indicate that mitochondria may act as dynamic receivers, integrators, and transmitters of peroxisome-derived mediators of oxidative stress, and this may have profound implications for our views on cellular aging and age-related diseases.


Frontiers in Cell and Developmental Biology | 2015

Redox interplay between mitochondria and peroxisomes

Celien Lismont; Marcus Nordgren; Paul P. Van Veldhoven; Marc Fransen

Reduction-oxidation or “redox” reactions are an integral part of a broad range of cellular processes such as gene expression, energy metabolism, protein import and folding, and autophagy. As many of these processes are intimately linked with cell fate decisions, transient or chronic changes in cellular redox equilibrium are likely to contribute to the initiation and progression of a plethora of human diseases. Since a long time, it is known that mitochondria are major players in redox regulation and signaling. More recently, it has become clear that also peroxisomes have the capacity to impact redox-linked physiological processes. To serve this function, peroxisomes cooperate with other organelles, including mitochondria. This review provides a comprehensive picture of what is currently known about the redox interplay between mitochondria and peroxisomes in mammals. We first outline the pro- and antioxidant systems of both organelles and how they may function as redox signaling nodes. Next, we critically review and discuss emerging evidence that peroxisomes and mitochondria share an intricate redox-sensitive relationship and cooperate in cell fate decisions. Key issues include possible physiological roles, messengers, and mechanisms. We also provide examples of how data mining of publicly-available datasets from “omics” technologies can be a powerful means to gain additional insights into potential redox signaling pathways between peroxisomes and mitochondria. Finally, we highlight the need for more studies that seek to clarify the mechanisms of how mitochondria may act as dynamic receivers, integrators, and transmitters of peroxisome-derived mediators of oxidative stress. The outcome of such studies may open up exciting new avenues for the community of researchers working on cellular responses to organelle-derived oxidative stress, a research field in which the role of peroxisomes is currently highly underestimated and an issue of discussion.


Sub-cellular biochemistry | 2013

Aging, Age-Related Diseases and Peroxisomes

Marc Fransen; Marcus Nordgren; Bo Wang; Oksana Apanasets; Paul P. Van Veldhoven

Human aging is considered as one of the biggest risk factors for the development of multiple diseases such as cancer, type-2 diabetes, and neurodegeneration. In addition, it is widely accepted that these age-related diseases result from a combination of various genetic, lifestyle, and environmental factors. As biological aging is a complex and multifactorial phenomenon, the molecular mechanisms underlying disease initiation and progression are not yet fully understood. However, a significant amount of evidence supports the theory that oxidative stress may act as a primary etiologic factor. Indeed, many signaling components like kinases, phosphatases, and transcription factors are exquisitely sensitive to the cellular redox status, and a chronic or severe disturbance in redox homeostasis can promote cell proliferation or trigger cell death. Now, almost 50 years after their discovery, there is a wealth of evidence that peroxisomes can function as a subcellular source, sink, or target of reactive oxygen and nitrogen molecules. Yet, the possibility that these organelles may act as a signaling platform for a variety of age-related processes has so far been underestimated and largely neglected. In this review, we will critically discuss the possible role of peroxisomes in the human aging process in light of the available data.


Frontiers in Physiology | 2013

Peroxisome degradation in mammals: mechanisms of action, recent advances, and perspectives

Marcus Nordgren; Bo Wang; Oksana Apanasets; Marc Fransen

Peroxisomes are remarkably dynamic organelles that participate in a diverse array of cellular processes, including the metabolism of lipids and reactive oxygen species. In order to regulate peroxisome function in response to changing nutritional and environmental stimuli, new organelles need to be formed and superfluous and dysfunctional organelles have to be selectively removed. Disturbances in any of these processes have been associated with the etiology and progression of various congenital neurodegenerative and age-related human disorders. The aim of this review is to critically explore our current knowledge of how peroxisomes are degraded in mammalian cells and how defects in this process may contribute to human disease. Some of the key issues highlighted include the current concepts of peroxisome removal, the peroxisome quality control mechanisms, the initial triggers for peroxisome degradation, the factors for dysfunctional peroxisome recognition, and the regulation of peroxisome homeostasis. We also dissect the functional and mechanistic relationship between different forms of selective organelle degradation and consider how lysosomal dysfunction may lead to defects in peroxisome turnover. In addition, we draw lessons from studies on other organisms and extrapolate this knowledge to mammals. Finally, we discuss the potential pathological implications of dysfunctional peroxisome degradation for human health.


Autophagy | 2015

Export-deficient monoubiquitinated PEX5 triggers peroxisome removal in SV40 large T antigen-transformed mouse embryonic fibroblasts

Marcus Nordgren; Tânia Francisco; Celien Lismont; Lore Hennebel; Chantal Brees; Bo Wang; Paul P. Van Veldhoven; Jorge E. Azevedo; Marc Fransen

Peroxisomes are ubiquitous cell organelles essential for human health. To maintain a healthy cellular environment, dysfunctional and superfluous peroxisomes need to be selectively removed. Although emerging evidence suggests that peroxisomes are mainly degraded by pexophagy, little is known about the triggers and molecular mechanisms underlying this process in mammalian cells. In this study, we show that PEX5 proteins fused to a bulky C-terminal tag trigger peroxisome degradation in SV40 large T antigen-transformed mouse embryonic fibroblasts. In addition, we provide evidence that this process is autophagy-dependent and requires monoubiquitination of the N-terminal cysteine residue that marks PEX5 for recycling. As our findings also demonstrate that the addition of a bulky tag to the C terminus of PEX5 does not interfere with PEX5 monoubiquitination but strongly inhibits its export from the peroxisomal membrane, we hypothesize that such a tag mimics a cargo protein that cannot be released from PEX5, thus keeping monoubiquitinated PEX5 at the membrane for a sufficiently long time to be recognized by the autophagic machinery. This in turn suggests that monoubiquitination of the N-terminal cysteine of peroxisome-associated PEX5 not only functions to recycle the peroxin back to the cytosol, but also serves as a quality control mechanism to eliminate peroxisomes with a defective protein import machinery.


Traffic | 2014

PEX5, the shuttling import receptor for peroxisomal matrix proteins, is a redox-sensitive protein.

Oksana Apanasets; Cláudia P. Grou; Paul P. Van Veldhoven; Chantal Brees; Bo Wang; Marcus Nordgren; Gabriele Dodt; Jorge E. Azevedo; Marc Fransen

Peroxisome maintenance depends on the import of nuclear‐encoded proteins from the cytosol. The vast majority of these proteins is destined for the peroxisomal lumen and contains a C‐terminal peroxisomal targeting signal, called PTS1. This targeting signal is recognized in the cytosol by the receptor PEX5. After docking at the peroxisomal membrane and release of the cargo into the organelle matrix, PEX5 is recycled to the cytosol through a process requiring monoubiquitination of an N‐terminal, cytosolically exposed cysteine residue (Cys11 in the human protein). At present, the reason why a cysteine, and not a lysine residue, is the target of ubiquitination remains unclear. Here, we provide evidence that PTS1 protein import into human fibroblasts is a redox‐sensitive process. We also demonstrate that Cys11 in human PEX5 functions as a redox switch that regulates PEX5 activity in response to intracellular oxidative stress. Finally, we show that exposure of human PEX5 to oxidized glutathione results in a ubiquitination‐deficient PEX5 molecule, and that substitution of Cys11 by a lysine can counteract this effect. In summary, these findings reveal that the activity of PEX5, and hence PTS1 import, is controlled by the redox state of the cytosol. The potential physiological implications of these findings are discussed.


Journal of Microscopy | 2012

Potential limitations in the use of KillerRed for fluorescence microscopy

Marcus Nordgren; Bo Wang; Oksana Apanasets; Chantal Brees; P. P. Van Veldhoven; M. Fransen

KillerRed, a bright red fluorescent protein, is a genetically encoded photosensitizer, which generates radicals and hydrogen peroxide upon green light illumination. The protein is a potentially powerful tool for selective light‐induced protein inactivation and cell killing, and can also be used to study downstream effects of locally increased levels of reactive oxygen species. The initial aim of this study was to investigate whether or not KillerRed‐mediated reactive oxygen species production inside peroxisomes could trigger the sequestration of these organelles into autophagosomes. Green fluorescent protein‐tagged microtubule‐associated protein 1 light chain 3 was used as autophagosome marker. We observed that KillerRed also emits weak green fluorescence upon excitation at 480 nm, and this may lead to erroneous data interpretation in conditions where green fluorophores are used. We discuss this potential pitfall of KillerRed for biological imaging and formulate recommendations to avoid misinterpretation of the data.


Archive | 2014

Dissecting Peroxisome-Mediated Signaling Pathways: a New and Exciting Research Field

Bo Wang; Oksana Apanasets; Marcus Nordgren; Marc Fransen

Peroxisomes are multifunctional organelles that play an important role in the metabolism of lipids and reactive oxygen species. As many cellular signaling functions are regulated via lipids, lipid second messengers, and oxidative stress-related factors, it is not surprising to see that these organelles are increasingly recognized as critical regulators of cellular signaling events. To fulfill these signaling functions, peroxisomes physically and functionally interact with other cell organelles, including mitochondria. Recent progress in the development of tools to visualize and modulate molecular processes at the subcellular level has made it possible to gain a better insight into the potential mechanisms governing peroxisomal signaling. This chapter is intended to provide a comprehensive overview of the tools and strategies that are currently available to study peroxisome-mediated signaling pathways in living cells. To provide the reader with relevant background information, we also highlight key studies that have contributed to our understanding of how peroxisomes may function as important sites of redox-, lipid-, inflammatory-, and viral-mediated signal transduction.

Collaboration


Dive into the Marcus Nordgren's collaboration.

Top Co-Authors

Avatar

Marc Fransen

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Bo Wang

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Chantal Brees

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Oksana Apanasets

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Celien Lismont

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Paul P. Van Veldhoven

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patrizia Agostinis

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Lore Hennebel

Katholieke Universiteit Leuven

View shared research outputs
Researchain Logo
Decentralizing Knowledge