Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marcus O. Muench is active.

Publication


Featured researches published by Marcus O. Muench.


Science | 2008

Maternal alloantigens promote the development of tolerogenic fetal regulatory T cells in utero.

Jeff E. Mold; Jakob Michaëlsson; Trevor D. Burt; Marcus O. Muench; Karen P. Beckerman; Michael P. Busch; Tzong-Hae Lee; Douglas F. Nixon; Joseph M. McCune

As the immune system develops, T cells are selected or regulated to become tolerant of self antigens and reactive against foreign antigens. In mice, the induction of such tolerance is thought to be attributable to the deletion of self-reactive cells. Here, we show that the human fetal immune system takes advantage of an additional mechanism: the generation of regulatory T cells (Tregs) that suppress fetal immune responses. We find that substantial numbers of maternal cells cross the placenta to reside in fetal lymph nodes, inducing the development of CD4+CD25highFoxP3+ Tregs that suppress fetal antimaternal immunity and persist at least until early adulthood. These findings reveal a form of antigen-specific tolerance in humans, induced in utero and probably active in regulating immune responses after birth.


Genome Research | 2014

Seamless gene correction of β-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac

Fei Xie; Lin Ye; Judy C. Chang; Ashley I. Beyer; Jiaming Wang; Marcus O. Muench; Yuet Wai Kan

β-thalassemia, one of the most common genetic diseases worldwide, is caused by mutations in the human hemoglobin beta (HBB) gene. Creation of human induced pluripotent stem cells (iPSCs) from β-thalassemia patients could offer an approach to cure this disease. Correction of the disease-causing mutations in iPSCs could restore normal function and provide a rich source of cells for transplantation. In this study, we used the latest gene-editing tool, CRISPR/Cas9 technology, combined with the piggyBac transposon to efficiently correct the HBB mutations in patient-derived iPSCs without leaving any residual footprint. No off-target effects were detected in the corrected iPSCs, and the cells retain full pluripotency and exhibit normal karyotypes. When differentiated into erythroblasts using a monolayer culture, gene-corrected iPSCs restored expression of HBB compared to the parental iPSCs line. Our study provides an effective approach to correct HBB mutations without leaving any genetic footprint in patient-derived iPSCs, thereby demonstrating a critical step toward the future application of stem cell-based gene therapy to monogenic diseases.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Seamless modification of wild-type induced pluripotent stem cells to the natural CCR5Δ32 mutation confers resistance to HIV infection

Lin Ye; Jiaming Wang; Ashley I. Beyer; Fernando Teque; Thomas J. Cradick; Zhongxia Qi; Judy C. Chang; Gang Bao; Marcus O. Muench; Jingwei Yu; Jay A. Levy; Yuet Wai Kan

Significance Patients homozygous for the C-C chemokine receptor type 5 (CCR5) gene with 32-bp deletions (Δ32) are resistant to HIV infection. Using the piggyBac technology plus transcription activator-like effector nucleases or clustered regularly interspaced short palindromic repeats-Cas9, the authors report, to our knowledge, for the first time in induced pluripotent stem cells (iPSCs) the efficient and seamless derivation of a homozygous CCR5Δ32 mutation, exactly mimicking the natural mutation. Monocytes and macrophages differentiated from these mutated iPSCs in vitro are resistant to HIV infection. This approach can be applied in the future toward the functional cure of HIV infection. The findings are also of great interest to researchers in many fields who wish to correct or introduce mutations in specific genes. Individuals homozygous for the C-C chemokine receptor type 5 gene with 32-bp deletions (CCR5Δ32) are resistant to HIV-1 infection. In this study, we generated induced pluripotent stem cells (iPSCs) homozygous for the naturally occurring CCR5Δ32 mutation through genome editing of wild-type iPSCs using a combination of transcription activator-like effector nucleases (TALENs) or RNA-guided clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 together with the piggyBac technology. Remarkably, TALENs or CRISPR-Cas9–mediated double-strand DNA breaks resulted in up to 100% targeting of the colonies on one allele of which biallelic targeting occurred at an average of 14% with TALENs and 33% with CRISPR. Excision of the piggyBac using transposase seamlessly reproduced exactly the naturally occurring CCR5Δ32 mutation without detectable exogenous sequences. We differentiated these modified iPSCs into monocytes/macrophages and demonstrated their resistance to HIV-1 challenge. We propose that this strategy may provide an approach toward a functional cure of HIV-1 infection.


Nature Genetics | 2015

Whole-genome fingerprint of the DNA methylome during human B cell differentiation.

Marta Kulis; Angelika Merkel; Simon Heath; Ana C. Queirós; Ronald Schuyler; Giancarlo Castellano; Renée Beekman; Emanuele Raineri; Anna Esteve; Guillem Clot; Néria Verdaguer-Dot; Martí Duran-Ferrer; Nuria Russiñol; Roser Vilarrasa-Blasi; Simone Ecker; Vera Pancaldi; Daniel Rico; Lidia Agueda; Julie Blanc; David C. Richardson; Laura Clarke; Avik Datta; Marien Pascual; Xabier Agirre; Felipe Prosper; Diego Alignani; Bruno Paiva; Gersende Caron; Thierry Fest; Marcus O. Muench

We analyzed the DNA methylome of ten subpopulations spanning the entire B cell differentiation program by whole-genome bisulfite sequencing and high-density microarrays. We observed that non-CpG methylation disappeared upon B cell commitment, whereas CpG methylation changed extensively during B cell maturation, showing an accumulative pattern and affecting around 30% of all measured CpG sites. Early differentiation stages mainly displayed enhancer demethylation, which was associated with upregulation of key B cell transcription factors and affected multiple genes involved in B cell biology. Late differentiation stages, in contrast, showed extensive demethylation of heterochromatin and methylation gain at Polycomb-repressed areas, and genes with apparent functional impact in B cells were not affected. This signature, which has previously been linked to aging and cancer, was particularly widespread in mature cells with an extended lifespan. Comparing B cell neoplasms with their normal counterparts, we determined that they frequently acquire methylation changes in regions already undergoing dynamic methylation during normal B cell differentiation.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Antibodies to human fetal erythroid cells from a nonimmune phage antibody library

Michael A. Huie; Mei-Chi Cheung; Marcus O. Muench; Baltazar Becerril; Yuet Wai Kan; James D. Marks

The ability to isolate fetal nucleated red blood cells (NRBCs) from the maternal circulation makes possible prenatal genetic analysis without the need for diagnostic procedures that are invasive for the fetus. Such isolation requires antibodies specific to fetal NRBCs. To generate a panel of antibodies to antigens present on fetal NRBCs, a new type of nonimmune phage antibody library was generated in which multiple copies of antibody fragments are displayed on each phage. Antibody fragments specific for fetal NRBCs were isolated by extensive predepletion of the phage library on adult RBCs and white blood cells (WBCs) followed by positive selection and amplification on fetal liver erythroid cells. After two rounds of selection, 44% of the antibodies analyzed bound fetal NRBCs, with two-thirds of these showing no binding of WBCs. DNA fingerprint analysis revealed the presence of at least 16 unique antibodies. Antibody specificity was confirmed by flow cytometry, immunohistochemistry, and immunofluorescence of total fetal liver and adult RBCs and WBCs. Antibody profiling suggested the generation of antibodies to previously unknown fetal RBC antigens. We conclude that multivalent display of antibodies on phage leads to efficient selection of panels of specific antibodies to cell surface antigens. The antibodies generated to fetal RBC antigens may have clinical utility for isolating fetal NRBCs from maternal circulation for noninvasive prenatal genetic diagnosis. Some of the antibodies may also have possible therapeutic utility for erythroleukemia.


Blood | 2014

Exosomes from red blood cell units bind to monocytes and induce proinflammatory cytokines, boosting T-cell responses in vitro

Ali Danesh; Heather Inglis; Rachael P. Jackman; Shiquan Wu; Xutao Deng; Marcus O. Muench; John W. Heitman; Philip J. Norris

Extracellular vesicles (EVs) are small, double membrane vesicles derived from leukocytes, platelets, and cells of other tissues under physiological or pathological conditions. Generation of EVs in stored blood is thought to be associated with adverse effects and potentially immunosuppression in blood transfusion recipients. We measured the quantity and cells of origin for EVs isolated from stored red blood cell (RBC) units and tested whether they had any effects on T-cell-mediated immune responses. Mixing peripheral blood mononuclear cells (PBMCs) with EVs resulted in secretion of proinflammatory cytokines and chemokines and increased survival of unstimulated PBMCs. EVs augmented mitogen-induced CD4(+) and CD8(+) T-cell proliferation in an antigen-presenting cell (APC)-dependent manner. We demonstrated that EVs interacted primarily with monocytes and induced proinflammatory cytokine secretion. We also showed that the exosome fraction of EVs and not larger microvesicles was responsible for induction of TNF-α production by monocytes. Furthermore, blockade of CD40 or CD40L accessory molecules largely neutralized the EV augmentation of T-cell responses, implying a role for cell-cell interaction between T cells and EV-activated monocytes. Contrary to our hypothesis, the data demonstrate that EVs isolated from RBC units increase the potency of APCs and boost mitogen-driven T-cell proliferative responses.


Nucleic Acids Research | 2012

A global DNA methylation and gene expression analysis of early human B-cell development reveals a demethylation signature and transcription factor network

Seung-Tae Lee; Yuanyuan Xiao; Marcus O. Muench; Jianqiao Xiao; Marina E. Fomin; John K. Wiencke; Shichun Zheng; Xiaoqin Dou; Adam J. de Smith; Anand P. Chokkalingam; Patricia A. Buffler; Xiaomei Ma; Joseph L. Wiemels

The epigenetic changes during B-cell development relevant to both normal function and hematologic malignancy are incompletely understood. We examined DNA methylation and RNA expression status during early B-cell development by sorting multiple replicates of four separate stages of pre-B cells derived from normal human fetal bone marrow and applied high-dimension DNA methylation scanning and expression arrays. Features of promoter and gene body DNA methylation were strongly correlated with RNA expression in multipotent progenitors (MPPs) both in a static state and throughout differentiation. As MPPs commit to pre-B cells, a predominantly demethylating phenotype ensues, with 79% of the 2966 differentially methylated regions observed involving demethylation. Demethylation events were more often gene body associated rather than promoter associated; predominantly located outside of CpG islands; and closely associated with EBF1, E2F, PAX5 and other functional transcription factor (TF) sites related to B-cell development. Such demethylation events were accompanied by TF occupancy. After commitment, DNA methylation changes appeared to play a smaller role in B-cell development. We identified a distinct development-dependent demethylation signature which has gene expression regulatory properties for pre-B cells, and provide a catalog reference for the epigenetic changes that occur in pre-B-cell leukemia and other B-cell-related diseases.


Journal of Immunology | 2008

Polysialic Acid, a Glycan with Highly Restricted Expression, Is Found on Human and Murine Leukocytes and Modulates Immune Responses

Penelope M. Drake; Jay K. Nathan; Christina M. Stock; Pamela V. Chang; Marcus O. Muench; Daisuke Nakata; J. Rachel Reader; Phung Gip; Kevin P. K. Golden; Birgit Weinhold; Rita Gerardy-Schahn; Frederic A. Troy; Carolyn R. Bertozzi

Polysialic acid (polySia) is a large glycan with restricted expression, typically found attached to the protein scaffold neural cell adhesion molecule (NCAM). PolySia is best known for its proposed role in modulating neuronal development. Its presence and potential functions outside the nervous systems are essentially unexplored. Herein we show the expression of polySia on hematopoietic progenitor cells, and demonstrate a role for this glycan in immune response using both acute inflammatory and tumor models. Specifically, we found that human NK cells modulate expression of NCAM and the degree of polymerization of its polySia glycans according to activation state. This contrasts with the mouse, where polySia and NCAM expression are restricted to multipotent hematopoietic progenitors and cells developing along a myeloid lineage. Sialyltransferase 8Sia IV−/− mice, which lacked polySia expression in the immune compartment, demonstrated an increased contact hypersensitivity response and decreased control of tumor growth as compared with wild-type animals. This is the first demonstration of polySia expression and regulation on myeloid cells, and the results in animal models suggest a role for polySia in immune regulation.


Developmental Biology | 2009

The human placenta is a hematopoietic organ during the embryonic and fetal periods of development

Alicia Bárcena; Mirhan Kapidzic; Marcus O. Muench; Matthew Gormley; Marvin A. Scott; Jingly F. Weier; Christy Ferlatte; Susan J. Fisher

We studied the potential role of the human placenta as a hematopoietic organ during embryonic and fetal development. Placental samples contained two cell populations-CD34(++)CD45(low) and CD34(+)CD45(low)-that were found in chorionic villi and in the chorioamniotic membrane. CD34(++)CD45(low) cells express many cell surface antigens found on multipotent primitive hematopoietic progenitors and hematopoietic stem cells. CD34(++)CD45(low) cells contained colony-forming units culture (CFU-C) with myeloid and erythroid potential in clonogenic in vitro assays, and they generated CD56(+) natural killer cells and CD19(+)CD20(+)sIgM(+) B cells in polyclonal liquid cultures. CD34(+)CD45(low) cells mostly comprised erythroid- and myeloid-committed progenitors, while CD34(-) cells lacked CFU-C. The placenta-derived precursors were fetal in origin, as demonstrated by FISH using repeat-sequence chromosome-specific probes for X and Y. The number of CD34(++)CD45(low) cells increased with gestational age, but their density (cells per gram of tissue) peaked at 5-8 wk, decreasing more than sevenfold at the onset of the fetal phase (9 wk of gestation). In addition to multipotent progenitors, the placenta contained myeloid- and erythroid-committed progenitors indicative of active in situ hematopoiesis. These data suggest that the human placenta is an important hematopoietic organ, raising the possibility of banking placental hematopoietic stem cells along with cord blood for transplantation.


BMC Gastroenterology | 2004

Maternal microchimerism in the livers of patients with Biliary atresia

David L. Suskind; Philip J. Rosenthal; Melvin B. Heyman; Denice Kong; Greg Magrane; Lee Ann Baxter-Lowe; Marcus O. Muench

BackgroundBiliary atresia (BA) is a neonatal cholestatic disease of unknown etiology. It is the leading cause of liver transplantation in children. Many similarities exist between BA and graft versus host disease suggesting engraftment of maternal cells during gestation could result in immune responses that lead to BA. The aim of this study was to determine the presence and extent of maternal microchimerism (MM) in the livers of infants with BA.MethodsUsing fluorescent in situ hybridization (FISH), 11 male BA & 4 male neonatal hepatitis (NH) livers, which served as controls, were analyzed for X and Y-chromosomes. To further investigate MM in BA, 3 patients with BA, and their mothers, were HLA typed. Using immunohistochemical stains, the BA livers were examined for MM. Four additional BA livers underwent analysis by polymerase chain reaction (PCR) for evidence of MM.ResultsBy FISH, 8 BA and 2 NH livers were interpretable. Seven of eight BA specimens showed evidence of MM. The number of maternal cells ranged from 2–4 maternal cells per biopsy slide. Neither NH specimen showed evidence of MM. In addition, immunohistochemical stains confirmed evidence of MM. Using PCR, a range of 1–142 copies of maternal DNA per 25,000 copies of patients DNA was found.ConclusionsMaternal microchimerism is present in the livers of patients with BA and may contribute to the pathogenesis of BA.

Collaboration


Dive into the Marcus O. Muench's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marina E. Fomin

Systems Research Institute

View shared research outputs
Top Co-Authors

Avatar

Ashley I. Beyer

Systems Research Institute

View shared research outputs
Top Co-Authors

Avatar

Maria Grazia Roncarolo

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Philip J. Norris

Systems Research Institute

View shared research outputs
Top Co-Authors

Avatar

Malcolm A. S. Moore

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John W. Heitman

Systems Research Institute

View shared research outputs
Top Co-Authors

Avatar

Graham Simmons

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge