Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Margaret E. Feeney is active.

Publication


Featured researches published by Margaret E. Feeney.


Nature Medicine | 2004

HIV evolution: CTL escape mutation and reversion after transmission

Alasdair Leslie; K. Pfafferott; P Chetty; Rika Draenert; M. M. Addo; Margaret E. Feeney; Yanhua Tang; Edward C. Holmes; Todd M. Allen; J G Prado; Marcus Altfeld; Christian Brander; C Dixon; D Ramduth; P Jeena; S A Thomas; A St John; Timothy Roach; B Kupfer; Graz Luzzi; Anne Edwards; G Taylor; H Lyall; Gareth Tudor-Williams; Vas Novelli; J Martinez-Picado; Photini Kiepiela; Bruce D. Walker; Philip J. R. Goulder

Within-patient HIV evolution reflects the strong selection pressure driving viral escape from cytotoxic T-lymphocyte (CTL) recognition. Whether this intrapatient accumulation of escape mutations translates into HIV evolution at the population level has not been evaluated. We studied over 300 patients drawn from the B- and C-clade epidemics, focusing on human leukocyte antigen (HLA) alleles HLA-B57 and HLA-B5801, which are associated with long-term HIV control and are therefore likely to exert strong selection pressure on the virus. The CTL response dominating acute infection in HLA-B57/5801-positive subjects drove positive selection of an escape mutation that reverted to wild-type after transmission to HLA-B57/5801-negative individuals. A second escape mutation within the epitope, by contrast, was maintained after transmission. These data show that the process of accumulation of escape mutations within HIV is not inevitable. Complex epitope- and residue-specific selection forces, including CTL-mediated positive selection pressure and virus-mediated purifying selection, operate in tandem to shape HIV evolution at the population level.


Journal of Virology | 2003

Comprehensive Epitope Analysis of Human Immunodeficiency Virus Type 1 (HIV-1)-Specific T-Cell Responses Directed against the Entire Expressed HIV-1 Genome Demonstrate Broadly Directed Responses, but No Correlation to Viral Load

M. M. Addo; Xu G. Yu; Almas Rathod; Daniel E. Cohen; Robert L. Eldridge; Daryld Strick; Mary N. Johnston; Colleen Corcoran; Alysse Wurcel; Cecily A. Fitzpatrick; Margaret E. Feeney; William Rodriguez; Nesli Basgoz; Rika Draenert; David Stone; Christian Brander; Philip J. R. Goulder; Eric S. Rosenberg; Marcus Altfeld; Bruce D. Walker

ABSTRACT Cellular immune responses play a critical role in the control of human immunodeficiency virus type 1 (HIV-1); however, the breadth of these responses at the single-epitope level has not been comprehensively assessed. We therefore screened peripheral blood mononuclear cells (PBMC) from 57 individuals at different stages of HIV-1 infection for virus-specific T-cell responses using a matrix of 504 overlapping peptides spanning all expressed HIV-1 proteins in a gamma interferon-enzyme-linked immunospot (Elispot) assay. HIV-1-specific T-cell responses were detectable in all study subjects, with a median of 14 individual epitopic regions targeted per person (range, 2 to 42), and all 14 HIV-1 protein subunits were recognized. HIV-1 p24-Gag and Nef contained the highest epitope density and were also the most frequently recognized HIV-1 proteins. The total magnitude of the HIV-1-specific response ranged from 280 to 25,860 spot-forming cells (SFC)/106 PBMC (median, 4,245) among all study participants. However, the number of epitopic regions targeted, the protein subunits recognized, and the total magnitude of HIV-1-specific responses varied significantly among the tested individuals, with the strongest and broadest responses detectable in individuals with untreated chronic HIV-1 infection. Neither the breadth nor the magnitude of the total HIV-1-specific CD8+-T-cell responses correlated with plasma viral load. We conclude that a peptide matrix-based Elispot assay allows for rapid, sensitive, specific, and efficient assessment of cellular immune responses directed against the entire expressed HIV-1 genome. These data also suggest that the impact of T-cell responses on control of viral replication cannot be explained by the mere quantification of the magnitude and breadth of the CD8+-T-cell response, even if a comprehensive pan-genome screening approach is applied.


Journal of Virology | 2005

Selective escape from CD8+ T-Cell responses represents a major driving force of Human Immunodeficiency Virus Type 1 (HIV-1) sequence diversity and reveals constraints on HIV-1 evolution

Todd M. Allen; Marcus Altfeld; Shaun C. Geer; Elizabeth T. Kalife; C. Moore; Kristin M. O'Sullivan; Ivna DeSouza; Margaret E. Feeney; Robert L. Eldridge; Erica L. Maier; Daniel E. Kaufmann; Matthew P. Lahaie; Laura L. Reyor; Giancarlo Tanzi; Mary N. Johnston; Christian Brander; Rika Draenert; Jürgen K. Rockstroh; Heiko Jessen; Eric S. Rosenberg; S. Mallal; Bruce D. Walker

ABSTRACT The sequence diversity of human immunodeficiency virus type 1 (HIV-1) represents a major obstacle to the development of an effective vaccine, yet the forces impacting the evolution of this pathogen remain unclear. To address this issue we assessed the relationship between genome-wide viral evolution and adaptive CD8+ T-cell responses in four clade B virus-infected patients studied longitudinally for as long as 5 years after acute infection. Of the 98 amino acid mutations identified in nonenvelope antigens, 53% were associated with detectable CD8+ T-cell responses, indicative of positive selective immune pressures. An additional 18% of amino acid mutations represented substitutions toward common clade B consensus sequence residues, nine of which were strongly associated with HLA class I alleles not expressed by the subjects and thus indicative of reversions of transmitted CD8 escape mutations. Thus, nearly two-thirds of all mutations were attributable to CD8+ T-cell selective pressures. A closer examination of CD8 escape mutations in additional persons with chronic disease indicated that not only did immune pressures frequently result in selection of identical amino acid substitutions in mutating epitopes, but mutating residues also correlated with highly polymorphic sites in both clade B and C viruses. These data indicate a dominant role for cellular immune selective pressures in driving both individual and global HIV-1 evolution. The stereotypic nature of acquired mutations provides support for biochemical constraints limiting HIV-1 evolution and for the impact of CD8 escape mutations on viral fitness.


Journal of Experimental Medicine | 2004

Immune Selection for Altered Antigen Processing Leads to Cytotoxic T Lymphocyte Escape in Chronic HIV-1 Infection

Rika Draenert; Sylvie Le Gall; K. Pfafferott; Alasdair Leslie; Polan Chetty; Christian Brander; Edward C. Holmes; Shih-Chung Chang; Margaret E. Feeney; Marylyn M. Addo; Lidia Ruiz; Danni Ramduth; Prakash Jeena; Marcus Altfeld; Stephanie R. Thomas; Yanhua Tang; Cori L. Verrill; Catherine Dixon; Julia G. Prado; Photini Kiepiela; Javier Martinez-Picado; Bruce D. Walker; Philip J. R. Goulder

Mutations within cytotoxic T lymphocyte (CTL) epitopes impair T cell recognition, but escape mutations arising in flanking regions that alter antigen processing have not been defined in natural human infections. In human histocompatibility leukocyte antigen (HLA)-B57+ HIV-infected persons, immune selection pressure leads to a mutation from alanine to proline at Gag residue 146 immediately preceding the NH2 terminus of a dominant HLA-B57–restricted epitope, ISPRTLNAW. Although N-extended wild-type or mutant peptides remained well-recognized, mutant virus–infected CD4 T cells failed to be recognized by the same CTL clones. The A146P mutation prevented NH2-terminal trimming of the optimal epitope by the endoplasmic reticulum aminopeptidase I. These results demonstrate that allele-associated sequence variation within the flanking region of CTL epitopes can alter antigen processing. Identifying such mutations is of major relevance in the construction of vaccine sequences.


Nature Immunology | 2006

Control of human immunodeficiency virus replication by cytotoxic T lymphocytes targeting subdominant epitopes

Nicole Frahm; Photini Kiepiela; Sharon Adams; Caitlyn Linde; Hannah S. Hewitt; Kaori Sango; Margaret E. Feeney; Marylyn M. Addo; Mathias Lichterfeld; Matthew P. Lahaie; Eunice Pae; Alysse Wurcel; Timothy Roach; M. Anne St. John; Marcus Altfeld; Francesco M. Marincola; C. Moore; S. Mallal; Mary Carrington; David Heckerman; Todd M. Allen; James I. Mullins; Bette Korber; Philip J. R. Goulder; Bruce D. Walker; Christian Brander

Despite limited data supporting the superiority of dominant over subdominant responses, immunodominant epitopes represent the preferred vaccine candidates. To address the function of subdominant responses in human immunodeficiency virus infection, we analyzed cytotoxic T lymphocyte responses restricted by HLA-B*1503, a rare allele in a cohort infected with clade B, although common in one infected with clade C. HLA-B*1503 was associated with reduced viral loads in the clade B cohort but not the clade C cohort, although both shared the immunodominant response. Clade B viral control was associated with responses to several subdominant cytotoxic T lymphocyte epitopes, whereas their clade C variants were less well recognized. These data suggest that subdominant responses can contribute to in vivo viral control and that high HLA allele frequencies may drive the elimination of subdominant yet effective epitopes from circulating viral populations.


Journal of Virology | 2004

Immune Escape Precedes Breakthrough Human Immunodeficiency Virus Type 1 Viremia and Broadening of the Cytotoxic T-Lymphocyte Response in an HLA-B27-Positive Long-Term-Nonprogressing Child

Margaret E. Feeney; Yanhua Tang; K. A. Roosevelt; Alasdair Leslie; Kenneth McIntosh; Nancy Karthas; Bruce D. Walker; Philip J. R. Goulder

ABSTRACT The emergence of cytotoxic T-lymphocyte (CTL) escape mutations in human immunodeficiency virus type 1 (HIV-1) proteins has been anecdotally associated with progression to AIDS, but it has been difficult to determine whether viral mutation is the cause or the result of increased viral replication. Here we describe a perinatally HIV-infected child who maintained a plasma viral load of <400 copies/ml for almost a decade until a nonbinding escape mutation emerged within the immunodominant CTL epitope. The child subsequently experienced a reemergence of HIV-1 viremia accompanied by a marked increase in the number of CTL epitopes targeted. This temporal pattern suggests that CD8 escape can play a causal role in the loss of immune control.


Journal of Immunology | 2005

HIV-1 Viral Escape in Infancy Followed by Emergence of a Variant-Specific CTL Response

Margaret E. Feeney; Yanhua Tang; K. Pfafferott; K. A. Roosevelt; Rika Draenert; Alicja Trocha; Xu G. Yu; Cori L. Verrill; Todd M. Allen; C. Moore; S. Mallal; Sandra K. Burchett; Kenneth McIntosh; Stephen Pelton; M A St John; Rohan Hazra; Paul Klenerman; Marcus Altfeld; Bruce D. Walker; Philip J. R. Goulder

Mutational escape from the CTL response represents a major driving force for viral diversification in HIV-1-infected adults, but escape during infancy has not been described previously. We studied the immune response of perinatally infected children to an epitope (B57-TW10) that is targeted early during acute HIV-1 infection in adults expressing HLA-B57 and rapidly mutates under this selection pressure. Viral sequencing revealed the universal presence of escape mutations within TW10 among B57- and B5801-positive children. Mutations in TW10 and other B57-restricted epitopes arose early following perinatal infection of B57-positive children born to B57-negative mothers. Surprisingly, the majority of B57/5801-positive children exhibited a robust response to the TW10 escape variant while recognizing the wild-type epitope weakly or not at all. These data demonstrate that children, even during the first years of life, are able to mount functional immune responses of sufficient potency to drive immune escape. Moreover, our data suggest that the consequences of immune escape may differ during infancy because most children mount a strong variant-specific immune response following escape, which is rarely seen in adults. Taken together, these findings indicate that the developing immune system of children may exhibit greater plasticity in responding to a continually evolving chronic viral infection.


Journal of Experimental Medicine | 2007

A viral CTL escape mutation leading to immunoglobulin-like transcript 4 - mediated functional inhibition of myelomonocytic cells

Mathias Lichterfeld; Daniel G. Kavanagh; Katie Williams; Beenu Moza; Stanley K. Mui; Toshiyuki Miura; Rohini Sivamurthy; Rachel L. Allgaier; Florencia Pereyra; Alicja Trocha; Margaret E. Feeney; Rajesh T. Gandhi; Eric S. Rosenberg; Marcus Altfeld; Todd M. Allen; Rachel L. Allen; Bruce D. Walker; Eric J. Sundberg; Xu G. Yu

Viral mutational escape can reduce or abrogate recognition by the T cell receptor (TCR) of virus-specific CD8+ T cells. However, very little is known about the impact of cytotoxic T lymphocyte (CTL) epitope mutations on interactions between peptide–major histocompatibility complex (MHC) class I complexes and MHC class I receptors expressed on other cell types. Here, we analyzed a variant of the immunodominant human leukocyte antigen (HLA)-B2705–restricted HIV-1 Gag KK10 epitope (KRWIILGLNK) with an L to M amino acid substitution at position 6 (L6M), which arises as a CTL escape variant after primary infection but is sufficiently immunogenic to elicit a secondary, de novo HIV-1–specific CD8+ T cell response with an alternative TCR repertoire in chronic infection. In addition to altering recognition by HIV-1–specific CD8+ T cells, the HLA-B2705–KK10 L6M complex also exhibits substantially increased binding to the immunoglobulin-like transcript (ILT) receptor 4, an inhibitory MHC class I–specific receptor expressed on myelomonocytic cells. Binding of the B2705–KK10 L6M complex to ILT4 leads to a tolerogenic phenotype of myelomonocytic cells with lower surface expression of dendritic cell (DC) maturation markers and co-stimulatory molecules. These data suggest a link between CTL-driven mutational escape, altered recognition by innate MHC class I receptors on myelomonocytic cells, and functional impairment of DCs, and thus provide important new insight into biological consequences of viral sequence diversification.


Journal of Virology | 2007

Mutually Exclusive T-Cell Receptor Induction and Differential Susceptibility to Human Immunodeficiency Virus Type 1 Mutational Escape Associated with a Two-Amino-Acid Difference between HLA Class I Subtypes

Xu G. Yu; Mathias Lichterfeld; Senica Chetty; Katie Williams; Stanley K. Mui; Toshiyuki Miura; Nicole Frahm; Margaret E. Feeney; Yanhua Tang; Florencia Pereyra; Montiago X. LaBute; K. Pfafferott; Alisdair Leslie; Hayley Crawford; Rachel L. Allgaier; William H. Hildebrand; Richard A. Kaslow; Christian Brander; Todd M. Allen; Eric S. Rosenberg; Photini Kiepiela; Madhu Vajpayee; Paul A. Goepfert; Marcus Altfeld; Philip J. R. Goulder; Bruce D. Walker

ABSTRACT The relative contributions of HLA alleles and T-cell receptors (TCRs) to the prevention of mutational viral escape are unclear. Here, we examined human immunodeficiency virus type 1 (HIV-1)-specific CD8+ T-cell responses restricted by two closely related HLA class I alleles, B*5701 and B*5703, that differ by two amino acids but are both associated with a dominant response to the same HIV-1 Gag epitope KF11 (KAFSPEVIPMF). When this epitope is presented by HLA-B*5701, it induces a TCR repertoire that is highly conserved among individuals, cross-recognizes viral epitope variants, and is rarely associated with mutational escape. In contrast, KF11 presented by HLA-B*5703 induces an entirely different, more heterogeneous TCR β-chain repertoire that fails to recognize specific KF11 escape variants which frequently arise in clade C-infected HLA-B*5703+ individuals. These data show the influence of HLA allele subtypes on TCR selection and indicate that extensive TCR diversity is not a prerequisite to prevention of allowable viral mutations.


Journal of Clinical Investigation | 2002

Expansion of pre-existing, lymph node-localized CD8+ T cells during supervised treatment interruptions in chronic HIV-1 infection

Marcus Altfeld; Jan van Lunzen; Nicole Frahm; Xu G. Yu; Claus Schneider; Robert L. Eldridge; Margaret E. Feeney; Dirk Meyer-Olson; Hans Juergen Stellbrink; Bruce D. Walker

To date, most studies have focused on the characterization of HIV-1-specific cellular immune responses in the peripheral blood (PB) of infected individuals. Much less is known about the comparative magnitude and breadth of responses in the lymphoid tissue. This study analyzed HIV-1-specific CD8+ T cell responses simultaneously in PB and lymph nodes (LNs) of persons with chronic HIV-1 infection and assessed the dynamics of these responses during antiretroviral treatment and supervised treatment interruption (STI). In untreated chronic infection, the magnitude of epitope-specific CD8+ T cell activity was significantly higher in LNs than in PB. Responses decreased in both compartments during highly active antiretroviral therapy, but this decline was more pronounced in PB. During STI, HIV-1-specific CD8+ T cell responses in PB increased significantly. Enhancement in breadth and magnitude was largely due to the expansion of pre-existing responses in the LNs, with new epitopes infrequently targeted. Taken together, these data demonstrate that HIV-1-specific CD8+ T cells are preferentially located in the LNs, with a subset of responses exclusively detectable in this compartment. Furthermore, the enhanced CD8+ T cell responses observed during STI in chronically infected individuals is largely due to expansion of pre-existing virus-specific CD8+ T cells, rather than the induction of novel responses.

Collaboration


Dive into the Margaret E. Feeney's collaboration.

Top Co-Authors

Avatar

Grant Dorsey

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge