Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Margaret E. Montgomery is active.

Publication


Featured researches published by Margaret E. Montgomery.


Conservation Genetics | 2003

Effects of intense versus diffuse population bottlenecks on microsatellite genetic diversity and evolutionary potential

Graham H.R. Osler; Lynn M. Woodworth; Margaret E. Montgomery; David A. Briscoe; Richard Frankham

Population bottlenecks occur frequently inthreatened species and result in loss ofgenetic diversity and evolutionary potential.These may range in severity between shortintense bottlenecks, and more diffusebottlenecks over many generations. However,there is little information on the impacts ofdifferent types of bottlenecks and disagreementas to their likely impacts. To resolve thisissue, we subjected replicate Drosophilapopulations to intense bottlenecks, consistingof one pair over a single generation, versusdiffuse bottlenecks consisting of an effectivesize of 100 over 57 generations. The intenseand diffuse bottlenecks were designed to induceidentical losses of heterozygosity. However,computer simulations showed that theprobability of retaining alleles is lower inthe intense than the diffuse bottlenecktreatment. The effects of these bottlenecks ongenetic diversity at nine microsatellite lociin Drosophila were evaluated. Bottleneckssubstantially reduced allelic diversity,heterozygosity and proportion of locipolymorphic, changed allele frequencydistributions and resulted in large differencesamong replicate populations. Allelic diversity,scaled by heterozygosity, was lower in theintense than the diffuse treatments. Short-termevolutionary potential, measured as the abilityof bottlenecked populations to cope withincreasing concentrations of NaCl, did notdiffer between the intense and diffusebottlenecked populations. The effects ofbottlenecks on short-term evolutionarypotential relate to loss of heterozygosity,rather than allelic diversity.


Zoo Biology | 1997

Minimizing kinship in captive breeding programs

Margaret E. Montgomery; Jonathan D. Ballou; Roderick K. Nurthen; David A. Briscoe; Richard Frankham

Captive populations of endangered species are managed to preserve genetic diversity and retain reproductive fitness. Minimizing kinship (MK) has been predicted to maximize the retention of gene diversity in pedigreed populations with unequal founder representation. MK was compared with maximum avoidance of inbreeding (MAI) and random choice of parents (RAND) using Drosophila melanogaster. Forty replicate populations of each treatment were initiated with unequal founder representation and managed for four generations. MK retained significantly more gene diversity and allelic diversity based on six microsatellite loci and seven allozyme loci than MAI or RAND. Reproductive fitness under both benign and competitive conditions did not differ significantly among treatments. Of the methods considered, MK is currently the best available for the genetic management of captive populations. Zoo Biol 16:377–389, 1997.


Conservation Genetics | 2000

Relationships between population size and loss of genetic diversity: comparisons of experimental results with theoretical predictions

Margaret E. Montgomery; Lynn M. Woodworth; Roderick K. Nurthen; Dean M. Gilligan; David A. Briscoe; Richard Frankham

Preservation of genetic diversity is of fundamental concern toconservation biology, as genetic diversity is required for evolutionarychange. Predictions of neutral theory are used to guide conservationactions, especially genetic management of captive populations ofendangered species. Loss of heterozygosity is predicted to be inverselyrelated to effective population size. However, there is controversy asto whether allozymes behave as predicted by this theory. Loss of geneticdiversity for seven allozyme loci, chromosome II inversions andmorphological mutations was investigated in 23 Drosophilamelanogaster populations, maintained at effective population sizesof 25 (8 replicates), 50 (6), 100 (4), 250 (3) and 500 (2) for 50generations. Allozyme genetic diversity (heterozygosity, percentpolymorphism and allelic diversity), inversions and morphologicalmutations were all lost at greater rates in smaller than largerpopulations. Conservation concerns about loss of genetic diversity insmall populations are clearly warranted. Across our populations, loss ofallozyme heterozygosity over generations 0–24, 0–49 and25–49 did not differ from the predictions of neutral theory. Thetrend in deviations was always in the direction expected withassociative overdominance. Our results support the use of neutral theoryto guide conservation actions, such as the genetic management ofendangered species in captivity.


Ecological Applications | 2004

Land systems as surrogates for biodiversity in conservation planning

Ian Oliver; Andrew J. Holmes; J. Mark Dangerfield; Michael R. Gillings; Anthony J. Pik; David R. Britton; Marita Holley; Margaret E. Montgomery; Madeline Raison; Vicki Logan; Robert L. Pressey; Andrew J. Beattie

Environmental surrogates (land classes) for the distribution of biodiversity are increasingly being used for conservation planning. However, data that demonstrate coincident patterns in land classes and biodiversity are limited. We ask the overall question, “Are land systems effective surrogates for the spatial configuration of biodiversity for conservation planning?” and we address three specific questions: (1) Do different land systems represent different biological assemblages? (2) Do biological assemblages on the same land system remain similar with increasing geographic separation? and (3) Do biological assemblages on the same land system remain similar with increasing land system isolation? Vascular plants, invertebrates, and microbiota were surveyed from 24 sites in four land systems in arid northwest New South Wales, Australia. Within each land system, sites were located to give a hierarchy of inter-site distances, and land systems were classified as either “low isolation” (large and continuous) or “high isolation” (small patches interspersed among other land systems). Each type of land system supported components of biodiversity either not found, or found infrequently, on other land systems, suggesting that land systems function as surrogates for biodiversity, and that conservation-area networks representing land-system diversity will also represent biological diversity. However, the majority of taxa were found on more than one land-system type, suggesting that a large proportion of the plant, arthropod, and microbial biodiversity may be characterized by widespread species with low fidelity to particular land systems. Significant relationships between geographic distance among sites and differences among assemblages were revealed for all taxa except the microbiota. Therefore, as sites on the same land system were located farther apart, the assemblages at those sites became more different. This finding strongly suggests that conservation planning based on land-system diversity should also sample the geographic range occupied by each land system. Land-system isolation was not revealed to be a significant source of variation in assemblage composition. Our research finds support for environmental surrogates for biodiversity in conservation planning, specifically the use of land systems and similarly derived land classifications. However, the need for explicit modeling of geographic distance in conservation planning is clearly indicated.


Zoo Biology | 1998

Single large or several small? Population fragmentation in the captive management of endangered species

Sienna H. Margan; Roderick K. Nurthen; Margaret E. Montgomery; Lynn M. Woodworth; Edwin H. Lowe; David A. Briscoe; Richard Frankham

Captive populations of endangered species are typically maintained effectively as single random-mating populations by translocating individuals between institutions. Genetic, disease, and cost considerations, however, suggest that this may not be the optimal management strategy. Genetic theory predicts that a pooled population derived from several small isolated populations will have greater genetic diversity, less inbreeding, and less genetic adaptation to captivity than a single large population of equivalent total size, provided there are no population extinctions. These predictions were tested using populations of Drosophila with effective size comparisons of 50 vs. 2 × 25; 100 vs. 2 × 50 vs. 4 × 25, and 500 vs. 2 × 250 vs. 4 × 100 + 2 × 50 vs. 8 × 25 + 6 × 50. Populations were maintained at the indicated sizes as separate pedigreed populations for 50 generations. The several small treatments were subsequently pooled and maintained for eight to 10 generations prior to determination of fitness and evolutionary potential. Several small populations (pooled), when compared to single large populations of equivalent total size, were found to have lower average inbreeding coefficients, significantly higher reproductive fitness under competitive conditions, similar fitness under benign captive conditions, higher genetic diversity, and equivalent evolutionary potential. Trends favored the several small (pooled) populations in all comparisons at population sizes of 50 and 100. We recommend that endangered species in captivity be maintained as several small populations, with occasional exchange of genetic material. This has genetic benefits over current management both in captivity and especially for reintroductions, as well as reducing translocation costs and risks of disease transfer. Zoo Biol 17:467–480, 1998.


Molecular Ecology | 1994

Modelling problems in conservation genetics using Drosophila: consequences of fluctuating population sizes

Lynn M. Woodworth; Margaret E. Montgomery; Roderick K. Nurthen; David A. Briscoe; Richard Frankham

Many natural populations fluctuate widely in population size. This is predicted to reduce effective population size, genetic variation, and reproductive fitness, and to increase inbreeding. The effects of fluctuating population size were examined in small populations of Drosophila melanogaster of the same average size, but maintained using either fluctuating (FPS) or equal (EPS) population sizes.FPS lines were maintained using seven pairs and one pair in alternate generations, and EPS lines with four pairs per generation. Ten replicates of each treatment were maintained. After eight generations, FPS had a higher inbreeding coefficient than EPS (0.60 vs. 0.38), a lower average allozyme heterozygosity (0.068 vs. 0.131), and a much lower relative fitness (0.03 vs. 0.25). Estimates of effective population sizes for FPS and EPS were 3.8 and 7.9 from pedigree inbreeding, and 4.9 vs. 7.1 from changes in average heterozygosities, as compared to theoretical expectations of 3.3 vs. 8.0. Results were generally in accordance with theoretical predictions. Management strategies for populations of rare and endangered species should aim to minimize population fluctuations over generations.


Animal Conservation | 1999

Do population size bottlenecks reduce evolutionary potential

Richard Frankham; Kelly Lees; Margaret E. Montgomery; Edwin H. Lowe; David A. Briscoe


Conservation Genetics | 2002

Rapid genetic deterioration in captive populations: Causes and conservation implications

Lynn M. Woodworth; Margaret E. Montgomery; David A. Briscoe; Richard Frankham


Conservation Biology | 1997

Is Mutation Accumulation a Threat to the Survival of Endangered Populations

Dean M. Gilligan; Lynn M. Woodworth; Margaret E. Montgomery; David A. Briscoe; Richard Frankham


Animal Conservation | 2000

Can fluctuating asymmetry be used to detect inbreeding and loss of genetic diversity in endangered populations

Dean M. Gilligan; Lynn M. Woodworth; Margaret E. Montgomery; Roderick K. Nurthen; David A. Briscoe; Richard Frankham

Collaboration


Dive into the Margaret E. Montgomery's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge