Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Margaret Porter Scott is active.

Publication


Featured researches published by Margaret Porter Scott.


Cancer Cell | 2011

Selective killing of mixed lineage leukemia cells by a potent small-molecule DOT1L inhibitor.

Scott R. Daigle; Edward J. Olhava; Carly A. Therkelsen; Christina R. Majer; Christopher John Sneeringer; Jeffrey Song; L. Danielle Johnston; Margaret Porter Scott; Jesse J. Smith; Yonghong Xiao; Lei Jin; Kevin Wayne Kuntz; Richard Chesworth; Mikel P. Moyer; Kathrin M. Bernt; Jen-Chieh Tseng; Andrew L. Kung; Scott A. Armstrong; Robert A. Copeland; Victoria M. Richon; Roy M. Pollock

Mislocated enzymatic activity of DOT1L has been proposed as a driver of leukemogenesis in mixed lineage leukemia (MLL). The characterization of EPZ004777, a potent, selective inhibitor of DOT1L is reported. Treatment of MLL cells with the compound selectively inhibits H3K79 methylation and blocks expression of leukemogenic genes. Exposure of leukemic cells to EPZ004777 results in selective killing of those cells bearing the MLL gene translocation, with little effect on non-MLL-translocated cells. Finally, in vivo administration of EPZ004777 leads to extension of survival in a mouse MLL xenograft model. These results provide compelling support for DOT1L inhibition as a basis for targeted therapeutics against MLL.


Nature Chemical Biology | 2012

A selective inhibitor of EZH2 blocks H3K27 methylation and kills mutant lymphoma cells

Sarah K. Knutson; Tim J. Wigle; Natalie Warholic; Christopher John Sneeringer; Christina J. Allain; Christine R. Klaus; Joelle D Sacks; Alejandra Raimondi; Christina R. Majer; Jeffrey Song; Margaret Porter Scott; Lei Jin; Jesse J. Smith; Edward J. Olhava; Richard Chesworth; Mikel P. Moyer; Victoria M. Richon; Robert A. Copeland; Heike Keilhack; Roy M. Pollock; Kevin Wayne Kuntz

EZH2 catalyzes trimethylation of histone H3 lysine 27 (H3K27). Point mutations of EZH2 at Tyr641 and Ala677 occur in subpopulations of non-Hodgkins lymphoma, where they drive H3K27 hypertrimethylation. Here we report the discovery of EPZ005687, a potent inhibitor of EZH2 (K(i) of 24 nM). EPZ005687 has greater than 500-fold selectivity against 15 other protein methyltransferases and has 50-fold selectivity against the closely related enzyme EZH1. The compound reduces H3K27 methylation in various lymphoma cells; this translates into apoptotic cell killing in heterozygous Tyr641 or Ala677 mutant cells, with minimal effects on the proliferation of wild-type cells. These data suggest that genetic alteration of EZH2 (for example, mutations at Tyr641 or Ala677) results in a critical dependency on enzymatic activity for proliferation (that is, the equivalent of oncogene addiction), thus portending the clinical use of EZH2 inhibitors for cancers in which EZH2 is genetically altered.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Coordinated activities of wild-type plus mutant EZH2 drive tumor-associated hypertrimethylation of lysine 27 on histone H3 (H3K27) in human B-cell lymphomas

Christopher John Sneeringer; Margaret Porter Scott; Kevin Wayne Kuntz; Sarah K. Knutson; Roy M. Pollock; Victoria M. Richon; Robert A. Copeland

EZH2, the catalytic subunit of the PRC2 complex, catalyzes the mono- through trimethylation of lysine 27 on histone H3 (H3K27). Histone H3K27 trimethylation is a mechanism for suppressing transcription of specific genes that are proximal to the site of histone modification. Point mutations of the EZH2 gene (Tyr641) have been reported to be linked to subsets of human B-cell lymphoma. The mutant allele is always found associated with a wild-type allele (heterozygous) in disease cells, and the mutations were reported to ablate the enzymatic activity of the PRC2 complex for methylating an unmodified peptide substrate. Here we demonstrate that the WT enzyme displays greatest catalytic efficiency (kcat/K) for the zero to monomethylation reaction of H3K27 and diminished efficiency for subsequent (mono- to di- and di- to trimethylation) reactions. In stark contrast, the disease-associated Y641 mutations display very limited ability to perform the first methylation reaction, but have enhanced catalytic efficiency for the subsequent reactions, relative to the WT enzyme. These results imply that the malignant phenotype of disease requires the combined activities of a H3K27 monomethylating enzyme (PRC2 containing WT EZH2 or EZH1) together with the mutant PRC2s for augmented conversion of H3K27 to the trimethylated form. To our knowledge, this is the first example of a human disease that is dependent on the coordinated activities of normal and disease-associated mutant enzymatic function.


Blood | 2013

Potent inhibition of DOT1L as treatment of MLL-fusion leukemia

Scott R. Daigle; Edward J. Olhava; Carly A. Therkelsen; Aravind Basavapathruni; Lei Jin; P. Ann Boriack-Sjodin; Christina J. Allain; Christine R. Klaus; Alejandra Raimondi; Margaret Porter Scott; Nigel J. Waters; Richard Chesworth; Mikel P. Moyer; Robert A. Copeland; Victoria M. Richon; Roy M. Pollock

Rearrangements of the MLL gene define a genetically distinct subset of acute leukemias with poor prognosis. Current treatment options are of limited effectiveness; thus, there is a pressing need for new therapies for this disease. Genetic and small molecule inhibitor studies have demonstrated that the histone methyltransferase DOT1L is required for the development and maintenance of MLL-rearranged leukemia in model systems. Here we describe the characterization of EPZ-5676, a potent and selective aminonucleoside inhibitor of DOT1L histone methyltransferase activity. The compound has an inhibition constant value of 80 pM, and demonstrates 37 000-fold selectivity over all other methyltransferases tested. In cellular studies, EPZ-5676 inhibited H3K79 methylation and MLL-fusion target gene expression and demonstrated potent cell killing that was selective for acute leukemia lines bearing MLL translocations. Continuous IV infusion of EPZ-5676 in a rat xenograft model of MLL-rearranged leukemia caused complete tumor regressions that were sustained well beyond the compound infusion period with no significant weight loss or signs of toxicity. EPZ-5676 is therefore a potential treatment of MLL-rearranged leukemia and is under clinical investigation.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Durable tumor regression in genetically altered malignant rhabdoid tumors by inhibition of methyltransferase EZH2

Sarah K. Knutson; Natalie Warholic; Tim J. Wigle; Christine R. Klaus; Christina J. Allain; Alejandra Raimondi; Margaret Porter Scott; Richard Chesworth; Mikel P. Moyer; Robert A. Copeland; Victoria M. Richon; Roy M. Pollock; Kevin Wayne Kuntz; Heike Keilhack

Inactivation of the switch/sucrose nonfermentable complex component SMARCB1 is extremely prevalent in pediatric malignant rhabdoid tumors (MRTs) or atypical teratoid rhabdoid tumors. This alteration is hypothesized to confer oncogenic dependency on EZH2 in these cancers. We report the discovery of a potent, selective, and orally bioavailable small-molecule inhibitor of EZH2 enzymatic activity, (N-((4,6-dimethyl-2-oxo-1,2-dihydropyridin-3-yl)methyl)-5-(ethyl(tetrahydro-2H-pyran-4-yl)amino)-4-methyl-4′-(morpholinomethyl)-[1,1′-biphenyl]-3-carboxamide). The compound induces apoptosis and differentiation specifically in SMARCB1-deleted MRT cells. Treatment of xenograft-bearing mice with (N-((4,6-dimethyl-2-oxo-1,2-dihydropyridin-3-yl)methyl)-5-(ethyl(tetrahydro-2H-pyran-4-yl)amino)-4-methyl-4′-(morpholinomethyl)-[1,1′-biphenyl]-3-carboxamide) leads to dose-dependent regression of MRTs with correlative diminution of intratumoral trimethylation levels of lysine 27 on histone H3, and prevention of tumor regrowth after dosing cessation. These data demonstrate the dependency of SMARCB1 mutant MRTs on EZH2 enzymatic activity and portend the utility of EZH2-targeted drugs for the treatment of these genetically defined cancers.


Nature Chemical Biology | 2015

A selective inhibitor of PRMT5 with in vivo and in vitro potency in MCL models.

Elayne Chan-Penebre; Kristy G Kuplast; Christina R. Majer; P. Ann Boriack-Sjodin; Tim J. Wigle; L. Danielle Johnston; Nathalie Rioux; Michael John Munchhof; Lei Jin; Suzanne L. Jacques; Kip A West; Trupti Lingaraj; Kimberly Stickland; Scott Ribich; Alejandra Raimondi; Margaret Porter Scott; Nigel J. Waters; Roy M. Pollock; Jesse J. Smith; Olena Barbash; Melissa B. Pappalardi; Thau Ho; Kelvin Nurse; Khyati P Oza; Kathleen T Gallagher; Ryan G. Kruger; Mikel P. Moyer; Robert A. Copeland; Richard Chesworth; Kenneth W. Duncan

Protein arginine methyltransferase-5 (PRMT5) is reported to have a role in diverse cellular processes, including tumorigenesis, and its overexpression is observed in cell lines and primary patient samples derived from lymphomas, particularly mantle cell lymphoma (MCL). Here we describe the identification and characterization of a potent and selective inhibitor of PRMT5 with antiproliferative effects in both in vitro and in vivo models of MCL. EPZ015666 (GSK3235025) is an orally available inhibitor of PRMT5 enzymatic activity in biochemical assays with a half-maximal inhibitory concentration (IC50) of 22 nM and broad selectivity against a panel of other histone methyltransferases. Treatment of MCL cell lines with EPZ015666 led to inhibition of SmD3 methylation and cell death, with IC50 values in the nanomolar range. Oral dosing with EPZ015666 demonstrated dose-dependent antitumor activity in multiple MCL xenograft models. EPZ015666 represents a validated chemical probe for further study of PRMT5 biology and arginine methylation in cancer and other diseases.


Chemical Biology & Drug Design | 2011

Chemogenetic analysis of human protein methyltransferases.

Victoria M. Richon; Danielle Johnston; Christopher John Sneeringer; Lei Jin; Christina R. Majer; Keith Elliston; L. Fred Jerva; Margaret Porter Scott; Robert A. Copeland

A survey of the human genome was performed to understand the constituency of protein methyltransferases (both protein arginine and lysine methyltransferases) and the relatedness of their catalytic domains. We identified 51 protein lysine methyltransferase proteins based on similarity to the canonical Drosophila Su(var)3‐9, enhancer of zeste (E(z)), and trithorax (trx) domain. Disruptor of telomeric silencing‐1‐like, a known protein lysine methyltransferase, did not fit within the protein lysine methyltransferase family, but did group with the protein arginine methyltransferases, along with 44 other proteins, including the METTL and NOP2/Sun domain family proteins. We show that a representative METTL, METTL11A, demonstrates catalytic activity as a histone methyltransferase. We also solved the co‐crystal structures of disruptor of telomeric silencing‐1‐like with S‐adenosylmethionine and S‐adenosylhomocysteine bound in its active site. The conformation of both ligands is virtually identical to that found in known protein arginine methyltransferases, METTL and NOP2/Sun domain family proteins and is distinct from that seen in the Drosophila Su(var)3‐9, enhancer of zeste (E(z)), and trithorax (trx) domain protein lysine methyltransferases. We have developed biochemical assays for 11 members of the protein methyltransferase target class and have profiled the affinity of three ligands for these enzymes: the common methyl‐donating substrate S‐adenosylmethionine; the common reaction product S‐adenosylhomocysteine; and the natural product sinefungin. The affinity of each of these ligands is mapped onto the family trees of the protein lysine methyltransferases and protein arginine methyltransferases to reveal patterns of ligand recognition by these enzymes.


Chemical Biology & Drug Design | 2012

Conformational adaptation drives potent, selective and durable inhibition of the human protein methyltransferase DOT1L.

Aravind Basavapathruni; Lei Jin; Scott R. Daigle; Christina R. Majer; Carly A. Therkelsen; Tim J. Wigle; Kevin Wayne Kuntz; Richard Chesworth; Roy M. Pollock; Margaret Porter Scott; Mikel P. Moyer; Victoria M. Richon; Robert A. Copeland; Edward J. Olhava

DOT1L is the human protein methyltransferase responsible for catalyzing the methylation of histone H3 on lysine 79 (H3K79). The ectopic activity of DOT1L, associated with the chromosomal translocation that is a universal hallmark of MLL‐rearranged leukemia, is a required driver of leukemogenesis in this malignancy. Here, we present studies on the structure–activity relationship of aminonucleoside‐based DOT1L inhibitors. Within this series, we find that improvements in target enzyme affinity and selectivity are driven entirely by diminution of the dissociation rate constant for the enzyme–inhibitor complex, leading to long residence times for the binary complex. The biochemical Ki and residence times measured for these inhibitors correlate well with their effects on intracellular H3K79 methylation and MLL‐rearranged leukemic cell killing. Crystallographic studies reveal a conformational adaptation mechanism associated with high‐affinity inhibitor binding and prolonged residence time; these studies also suggest that conformational adaptation likewise plays a critical role in natural ligand interactions with the enzyme, hence, facilitating enzyme turnover. These results provide critical insights into the role of conformational adaptation in the enzymatic mechanism of catalysis and in pharmacologic intervention for DOT1L and other members of this enzyme class.


FEBS Letters | 2012

A687V EZH2 is a gain-of-function mutation found in lymphoma patients

Christina R. Majer; Lei Jin; Margaret Porter Scott; Sarah K. Knutson; Kevin Wayne Kuntz; Heike Keilhack; Jesse J. Smith; Mikel P. Moyer; Victoria M. Richon; Robert A. Copeland; Tim J. Wigle

Heterozygous point mutations at Y641 and A677 in the EZH2 SET domain are prevalent in about 10–24% of Non‐Hodgkin lymphomas (NHL). Previous studies indicate that these are gain‐of‐function mutations leading to the hypertrimethylation of H3K27. These EZH2 mutations may drive the proliferation of lymphoma and make EZH2 a molecular target for patients harboring these mutations. Here, another EZH2 SET domain point mutation, A687V, occurring in about 1–2% of lymphoma patients, is also shown to be a gain‐of‐function mutation that greatly enhances its ability to perform dimethylation relative to wild‐type EZH2 and is equally proficient at catalyzing trimethylation. We propose that A687V EZH2 also leads to hypertrimethylation of H3K27 and may thus be a driver mutation in NHL.


Current Opinion in Chemical Biology | 2010

Targeting epigenetic enzymes for drug discovery

Robert A. Copeland; Edward J. Olhava; Margaret Porter Scott

Epigenetic control of gene transcription is the result of enzyme-mediated covalent modifications of promoter-region DNA sites and of histone proteins around which chromosomal DNA is wound. Many of the enzymes that mediate these epigenetic reactions are dysregulated in human diseases. Small molecule inhibitors against two classes of these enzymes have been approved for use in patients: DNA methyltransferase (DNMT) inhibitors and histone deacetylase inhibitors. Other classes of epigenetic enzymes have been demonstrated to have strong disease association and are currently being targeted for small molecule inhibition. In this article we review these enzymes and chemical biology approaches aimed at discovering small molecule inhibitors against them for therapeutic use.

Collaboration


Dive into the Margaret Porter Scott's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tim J. Wigle

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edward J. Olhava

Millennium Pharmaceuticals

View shared research outputs
Researchain Logo
Decentralizing Knowledge