Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Margaret S. Livingstone is active.

Publication


Featured researches published by Margaret S. Livingstone.


The Journal of Neuroscience | 1984

Anatomy and physiology of a color system in the primate visual cortex

Margaret S. Livingstone; David H. Hubel

Staining for the mitochondrial enzyme cytochrome oxidase reveals an array of dense regions (blobs) in the primate primary visual cortex. They are most obvious in the upper layers, 2 and 3, but can also be seen in layers 4B, 5, and 6, in register with the blobs in layers 2 and 3. We compared cells inside and outside blobs in macaque and squirrel monkeys, looking at their physiological responses and anatomical connections. Cells within blobs did not show orientation selectivity, whereas cells between blobs were highly orientation selective. Receptive fields of blob cells had circular symmetry and were of three main types, Broad-Band Center-Surround, Red-Green Double-Opponent, and Yellow-Blue Double-Opponent. Double-Opponent cells responded poorly or not at all to white light in any form, or to diffuse light at any wavelength. In contrast to blob cells, none of the cells recorded in layer 4C beta were Double-Opponent: like the majority of cells in the parvocellular geniculate layers, they were either Broad-Band or Color- Opponent Center-Surround, e.g., red-on-center green-off-surround. To our surprise cells in layer 4C alpha were orientation selective. In tangential penetrations throughout layers 2 and 3, optium orientation, when plotted against electrode position, formed long, regular, usually linear sequences, which were interrupted but not perturbed by the blobs. Staining area 18 for cytochrome oxidase reveals a series of alternating wide and narrow dense stripes, separated by paler interstripes. After small injections of horseradish peroxidase into area 18, we saw a precise set of connections from the blobs in area 17 to thin stripes in area 18, and from the interblob regions in area 17 to interstripes in area 18. Specific reciprocal connections also ran from thin stripes to blobs and from interstripes to interblobs. We have not yet determined the area 17 connections to thick stripes in area 18. In addition, within area 18 there are stripe-to-stripe and interstripe- to-interstripe intrinsic connections. These results suggest that a system involved in the processing of color information, especially color-spatial interactions, runs parallel to and separate from the orientation-specific system. Color, encoded in three coordinates by the major blob cell types, red-green, yellow-blue, and black-white, can be transformed into the three coordinates, red, green, and blue, of the Retinex algorithm of Land.


Cell | 1984

Loss of calcium/calmodulin responsiveness in adenylate cyclase of rutabaga, a Drosophila learning mutant

Margaret S. Livingstone; Patricia P. Sziber; William G. Quinn

We have isolated and mapped an X-linked recessive mutation in Drosophila that blocks associative learning, and have partially characterized it biochemically. The mutation affects adenylate cyclase activity. Cyclase activity from mutant flies differed from the wild-type enzyme in that it was not stimulated by calcium or calmodulin. Mutant cyclase activity did respond to guanyl nucleotides, fluoride, and monoamines, which suggests that the defect is neither in the hormone receptor nor in either known GTP-binding regulatory protein. The mutation possibly affects the catalytic subunit directly. We postulate that there is at least one other type of adenylate cyclase activity that is unaffected by the mutation and insensitive to calcium/calmodulin.


Science | 1980

Serotonin and octopamine produce opposite postures in lobsters.

Margaret S. Livingstone; Ronald M. Harris-Warrick; Edward A. Kravitz

Serotonin and octopamine, injected into the circulation of freely moving lobsters and crayfish, produce opposite behavioral effects. Octopamine injection produces sustained extension of the limbs and abdomen; serotonin injection produces sustained flexion. Neurophysiological analyses show that these postures can be accounted for by opposing, coordinated effects of these amines on patterns of motoneuron activity recorded from the ventral nerve cord.


Nature Neuroscience | 1998

Neuronal correlates of visibility and invisibility in the primate visual system.

Stephen L. Macknik; Margaret S. Livingstone

A brief visual target stimulus may be rendered invisible if it is immediately preceded or followed by another stimulus. This class of illusions, known as visual masking, may allow insights into the neural mechanisms that underlie visual perception. We have therefore explored the temporal characteristics of masking illusions in humans, and compared them with corresponding neuronal responses in the primary visual cortex of awake and anesthetized monkeys. Stimulus parameters that in humans produce forward masking (in which the mask precedes the target) suppress the transient on-response to the target in monkey visual cortex. Those that produce backward masking (in which the mask comes after the target) inhibit the transient after-discharge, the excitatory response that occurs just after the disappearance of the target. These results suggest that, for targets that can be masked (those of short duration), the transient neuronal responses associated with onset and turning off of the target may be important in its visibility.


Annual Review of Neuroscience | 2008

Mechanisms of Face Perception

Doris Y. Tsao; Margaret S. Livingstone

Faces are among the most informative stimuli we ever perceive: Even a split-second glimpse of a persons face tells us his identity, sex, mood, age, race, and direction of attention. The specialness of face processing is acknowledged in the artificial vision community, where contests for face-recognition algorithms abound. Neurological evidence strongly implicates a dedicated machinery for face processing in the human brain to explain the double dissociability of face- and object-recognition deficits. Furthermore, recent evidence shows that macaques too have specialized neural machinery for processing faces. Here we propose a unifying hypothesis, deduced from computational, neurological, fMRI, and single-unit experiments: that what makes face processing special is that it is gated by an obligatory detection process. We clarify this idea in concrete algorithmic terms and show how it can explain a variety of phenomena associated with face processing.


Neuron | 2003

Stereopsis activates V3A and caudal intraparietal areas in macaques and humans.

Doris Y. Tsao; Wim Vanduffel; Yuka Sasaki; Denis Fize; Tamara A. Knutsen; Joseph B. Mandeville; Lawrence L. Wald; Anders M. Dale; Bruce R. Rosen; David C. Van Essen; Margaret S. Livingstone; Guy A. Orban; Roger B. H. Tootell

Stereopsis, the perception of depth from small differences between the images in the two eyes, provides a rich model for investigating the cortical construction of surfaces and space. Although disparity-tuned cells have been found in a large number of areas in macaque visual cortex, stereoscopic processing in these areas has never been systematically compared using the same stimuli and analysis methods. In order to examine the global architecture of stereoscopic processing in primate visual cortex, we studied fMRI activity in alert, fixating human and macaque subjects. In macaques, we found strongest activation to near/far compared to zero disparity in areas V3, V3A, and CIPS. In humans, we found strongest activation to the same stimuli in areas V3A, V7, the V4d topolog (V4d-topo), and a caudal parietal disparity region (CPDR). Thus, in both primate species a small cluster of areas at the parieto-occipital junction appears to be specialized for stereopsis.


Nature Neuroscience | 2009

A face feature space in the macaque temporal lobe

Winrich A. Freiwald; Doris Y. Tsao; Margaret S. Livingstone

The ability of primates to effortlessly recognize faces has been attributed to the existence of specialized face areas. One such area, the macaque middle face patch, consists almost entirely of cells that are selective for faces, but the principles by which these cells analyze faces are unknown. We found that middle face patch neurons detect and differentiate faces using a strategy that is both part based and holistic. Cells detected distinct constellations of face parts. Furthermore, cells were tuned to the geometry of facial features. Tuning was most often ramp-shaped, with a one-to-one mapping of feature magnitude to firing rate. Tuning amplitude depended on the presence of a whole, upright face and features were interpreted according to their position in a whole, upright face. Thus, cells in the middle face patch encode axes of a face space specialized for whole, upright faces.


Cancer Research | 2012

Temporary Disruption of the Blood–Brain Barrier by Use of Ultrasound and Microbubbles: Safety and Efficacy Evaluation in Rhesus Macaques

Nathan McDannold; Costas D. Arvanitis; Natalia Vykhodtseva; Margaret S. Livingstone

The blood-brain barrier (BBB) prevents entry of most drugs into the brain and is a major hurdle to the use of drugs for brain tumors and other central nervous system disorders. Work in small animals has shown that ultrasound combined with an intravenously circulating microbubble agent can temporarily permeabilize the BBB. Here, we evaluated whether this targeted drug delivery method can be applied safely, reliably, and in a controlled manner on rhesus macaques using a focused ultrasound system. We identified a clear safety window during which BBB disruption could be produced without evident tissue damage, and the acoustic pressure amplitude where the probability for BBB disruption was 50% and was found to be half of the value that would produce tissue damage. Acoustic emission measurements seem promising for predicting BBB disruption and damage. In addition, we conducted repeated BBB disruption to central visual field targets over several weeks in animals trained to conduct complex visual acuity tasks. All animals recovered from each session without behavioral deficits, visual deficits, or loss in visual acuity. Together, our findings show that BBB disruption can be reliably and repeatedly produced without evident histologic or functional damage in a clinically relevant animal model using a clinical device. These results therefore support clinical testing of this noninvasive-targeted drug delivery method.


The Journal of Neuroscience | 1990

Color and contrast sensitivity in the lateral geniculate body and primary visual cortex of the macaque monkey

David H. Hubel; Margaret S. Livingstone

We tested color and contrast sensitivity in the magnocellular and parvocellular subdivisions of the lateral geniculate body and in layers 2, 3, 4B, and 4C alpha of visual area 1 to obtain physiological data on the degree of segregation of the 2 pathways and on the fate of the color and contrast information as it is transmitted from the geniculate to the cortex. On average, magnocellular geniculate cells were much less responsive than parvocellular cells to shifts between 2 equiluminant colors. Nevertheless, many magnocellular cells (though not all) continued to give some response at equiluminance. As expected from previous studies, luminance contrast sensitivity differed markedly between magnocellular and parvocellular layers. In V-1, the properties of cells in the magnorecipient layers 4C alpha and 4B faithfully reflected the properties of magnocellular geniculate cells, showing no evidence of any parvocellular input. Like magnocellular geniculate cells, they showed high contrast sensitivity, and with color contrast stimuli they showed large response decrements at equiluminance. In the interblob regions of cortical layers 2 and 3, which anatomically appear to receive most of their inputs from parvorecipient layer 4C beta, contrast sensitivities of some of the cells were compatible with a predominantly parvocellular input. Other interblob cells had sensitivities intermediate between magno- and parvocellular geniculate cells, suggesting a possible contribution from the magnocellular system. Many cells in cortical layers 2 and 3 responded to color- contrast borders equally well at all relative brightnesses of the 2 colors, including equiluminance. We recorded from many direction- and disparity-selective cells in V-1: most of the direction-selective and all of the clearly stereo-selective cells were located in layer 4B.


Neuron | 2003

End-Stopping and the Aperture Problem: Two-Dimensional Motion Signals in Macaque V1

Christopher C. Pack; Margaret S. Livingstone; Kevin R. Duffy; Richard T. Born

Our perception of fine visual detail relies on small receptive fields at early stages of visual processing. However, small receptive fields tend to confound the orientation and velocity of moving edges, leading to ambiguous or inaccurate motion measurements (the aperture problem). Thus, it is often assumed that neurons in primary visual cortex (V1) carry only ambiguous motion information. Here we show that a subpopulation of V1 neurons is capable of signaling motion direction in a manner that is independent of contour orientation. Specifically, end-stopped V1 neurons obtain accurate motion measurements by responding only to the endpoints of long contours, a strategy which renders them largely immune to the aperture problem. Furthermore, the time course of end-stopping is similar to the time course of motion integration by MT neurons. These results suggest that cortical neurons might represent object motion by responding selectively to two-dimensional discontinuities in the visual scene.

Collaboration


Dive into the Margaret S. Livingstone's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nathan McDannold

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Natalia Vykhodtseva

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Costas D. Arvanitis

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Doris Y. Tsao

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Albert M. Galaburda

Beth Israel Deaconess Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge