Doris Y. Tsao
California Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Doris Y. Tsao.
Nature Neuroscience | 2003
Doris Y. Tsao; Winrich A. Freiwald; Tamara A. Knutsen; Joseph B. Mandeville; Roger B. H. Tootell
How are different object categories organized by the visual system? Current evidence indicates that monkeys and humans process object categories in fundamentally different ways. Functional magnetic resonance imaging (fMRI) studies suggest that humans have a ventral temporal face area, but such evidence is lacking in macaques. Instead, face-responsive neurons in macaques seem to be scattered throughout temporal cortex, with some relative concentration in the superior temporal sulcus (STS). Here, using fMRI in alert fixating macaque monkeys and humans, we found that macaques do have discrete face-selective patches, similar in relative size and number to face patches in humans. The face patches were embedded within a large swath of object-selective cortex extending from V4 to rostral TE. This large region responded better to pictures of intact objects compared to scrambled objects, with different object categories eliciting different patterns of activity, as in the human. Overall, our results suggest that humans and macaques share a similar brain architecture for visual object processing.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Doris Y. Tsao; Sebastian Moeller; Winrich A. Freiwald
Face recognition is of central importance for primate social behavior. In both humans and macaques, the visual analysis of faces is supported by a set of specialized face areas. The precise organization of these areas and the correspondence between individual macaque and human face-selective areas are debated. Here, we examined the organization of face-selective regions across the temporal lobe in a large number of macaque and human subjects. Macaques showed 6 regions of face-selective cortex arranged in a stereotypical pattern along the temporal lobe. Human subjects showed, in addition to 3 reported face areas (the occipital, fusiform, and superior temporal sulcus face areas), a face-selective area located anterior to the fusiform face area, in the anterior collateral sulcus. These results suggest a closer anatomical correspondence between macaque and human face-processing systems than previously realized.
Annual Review of Neuroscience | 2008
Doris Y. Tsao; Margaret S. Livingstone
Faces are among the most informative stimuli we ever perceive: Even a split-second glimpse of a persons face tells us his identity, sex, mood, age, race, and direction of attention. The specialness of face processing is acknowledged in the artificial vision community, where contests for face-recognition algorithms abound. Neurological evidence strongly implicates a dedicated machinery for face processing in the human brain to explain the double dissociability of face- and object-recognition deficits. Furthermore, recent evidence shows that macaques too have specialized neural machinery for processing faces. Here we propose a unifying hypothesis, deduced from computational, neurological, fMRI, and single-unit experiments: that what makes face processing special is that it is gated by an obligatory detection process. We clarify this idea in concrete algorithmic terms and show how it can explain a variety of phenomena associated with face processing.
Neuron | 2003
Doris Y. Tsao; Wim Vanduffel; Yuka Sasaki; Denis Fize; Tamara A. Knutsen; Joseph B. Mandeville; Lawrence L. Wald; Anders M. Dale; Bruce R. Rosen; David C. Van Essen; Margaret S. Livingstone; Guy A. Orban; Roger B. H. Tootell
Stereopsis, the perception of depth from small differences between the images in the two eyes, provides a rich model for investigating the cortical construction of surfaces and space. Although disparity-tuned cells have been found in a large number of areas in macaque visual cortex, stereoscopic processing in these areas has never been systematically compared using the same stimuli and analysis methods. In order to examine the global architecture of stereoscopic processing in primate visual cortex, we studied fMRI activity in alert, fixating human and macaque subjects. In macaques, we found strongest activation to near/far compared to zero disparity in areas V3, V3A, and CIPS. In humans, we found strongest activation to the same stimuli in areas V3A, V7, the V4d topolog (V4d-topo), and a caudal parietal disparity region (CPDR). Thus, in both primate species a small cluster of areas at the parieto-occipital junction appears to be specialized for stereopsis.
Science | 2008
Sebastian Moeller; Winrich A. Freiwald; Doris Y. Tsao
The brain processes objects through a series of regions along the ventral visual pathway, but the circuitry subserving the analysis of specific complex forms remains unknown. One complex form category, faces, selectively activates six patches of cortex in the macaque ventral pathway. To identify the connectivity of these face patches, we used electrical microstimulation combined with simultaneous functional magnetic resonance imaging. Stimulation of each of four targeted face patches produced strong activation, specifically within a subset of the other face patches. Stimulation outside the face patches produced an activation pattern that spared the face patches. These results suggest that the face patches form a strongly and specifically interconnected hierarchical network.
Nature Neuroscience | 2009
Winrich A. Freiwald; Doris Y. Tsao; Margaret S. Livingstone
The ability of primates to effortlessly recognize faces has been attributed to the existence of specialized face areas. One such area, the macaque middle face patch, consists almost entirely of cells that are selective for faces, but the principles by which these cells analyze faces are unknown. We found that middle face patch neurons detect and differentiate faces using a strategy that is both part based and holistic. Cells detected distinct constellations of face parts. Furthermore, cells were tuned to the geometry of facial features. Tuning was most often ramp-shaped, with a one-to-one mapping of feature magnitude to firing rate. Tuning amplitude depended on the presence of a whole, upright face and features were interpreted according to their position in a whole, upright face. Thus, cells in the middle face patch encode axes of a face space specialized for whole, upright faces.
NeuroImage | 2002
Francisca P. Leite; Doris Y. Tsao; Wim Vanduffel; Denis Fize; Yuka Sasaki; Lawrence L. Wald; Anders M. Dale; Kenneth K. Kwong; Guy A. Orban; Bruce R. Rosen; Roger B. H. Tootell; Joseph B. Mandeville
Iron oxide contrast agents have been employed extensively in anesthetized rodents to enhance fMRI sensitivity and to study the physiology of cerebral blood volume (CBV) in relation to blood oxygen level-dependent (BOLD) signal following neuronal activation. This study quantified the advantages of exogenous agent for repeated neuroimaging in awake, nonhuman primates using a clinical 3 Tesla scanner. A monocrystalline iron oxide nanoparticle (MION) solution was injected at iron doses of 8 to 10 mg/kg in two macaque monkeys. Adverse behavioral effects due to contrast agent were not observed in either monkey using cumulative doses in excess of 60 mg/kg. Relative to BOLD imaging at 3 Tesla, MION increased functional sensitivity by an average factor of 3 across the brain for a stimulus of long duration. Rapid stimulus presentation attenuated MION signal changes more than BOLD signal changes, due to the slower time constant of the blood volume response relative to BOLD signal. Overall, the contrast agent produced a dramatic improvement in functional brain imaging results in the awake, behaving primate at this field strength. (c) 2002 Elsevier Science (USA).
Nature Neuroscience | 2008
Doris Y. Tsao; Nicole Schweers; Sebastian Moeller; Winrich A. Freiwald
In primates, specialized occipital-temporal face areas support the visual analysis of faces, but it is unclear whether similarly specialized areas exist in the frontal lobe. Using functional magnetic resonance imaging in alert macaques, we identified three discrete regions of highly face-selective cortex in ventral prefrontal cortex, one of which was strongly lateralized to the right hemisphere. These prefrontal face patches may constitute dedicated modules for retrieving and responding to facial information.
The Journal of Neuroscience | 2015
X Julien Dubois; Archy Otto de Berker; Doris Y. Tsao
Multivariate pattern analysis (MVPA) of fMRI data has become an important technique for cognitive neuroscientists in recent years; however, the relationship between fMRI MVPA and the underlying neural population activity remains unexamined. Here, we performed MVPA of fMRI data and single-unit data in the same species, the macaque monkey. Facial recognition in the macaque is subserved by a well characterized system of cortical patches, which provided the test bed for our comparison. We showed that neural population information about face viewpoint was readily accessible with fMRI MVPA from all face patches, in agreement with single-unit data. Information about face identity, although it was very strongly represented in the populations of units of the anterior face patches, could not be retrieved from the same data. The discrepancy was especially striking in patch AL, where neurons encode both the identity and viewpoint of human faces. From an analysis of the characteristics of the neural representations for viewpoint and identity, we conclude that fMRI MVPA cannot decode information contained in the weakly clustered neuronal responses responsible for coding the identity of human faces in the macaque brain. Although further studies are needed to elucidate the relationship between information decodable from fMRI multivoxel patterns versus single-unit populations for other variables in other brain regions, our result has important implications for the interpretation of negative findings in fMRI multivoxel pattern analyses.
The Journal of Neuroscience | 2009
Sebastian Moeller; Nambi Nallasamy; Doris Y. Tsao; Winrich A. Freiwald
Cortical networks generate temporally correlated brain activity. To clarify the functional significance of this correlated activity, we asked whether and how its structure depends on stimulus and arousal state. Using independent components analysis of macaque functional magnetic resonance imaging data, we identified a large number of brain networks that were strikingly reproducible across different visual stimulus contexts. Fewer networks were reproducible across alert and anesthetized brain states. Network complexity ranged from bilateral single-node networks to networks comprising multiple discrete nodes distributed over 3 cm of cortex; one network identified in our survey included parts of the temporal parietal occipital junction, dorsal premotor cortex, insula, and posterior cingulate cortex bilaterally. Our results reveal the wealth of spatially structured correlated networks throughout the brain in both alert and anesthetized monkeys, and show that anesthesia significantly alters the spatial structure of these networks.