Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Margaret W. Fanning is active.

Publication


Featured researches published by Margaret W. Fanning.


IEEE Transactions on Microwave Theory and Techniques | 2000

A clinical prototype for active microwave imaging of the breast

Paul M. Meaney; Margaret W. Fanning; Dun Li; Steven P. Poplack; Keith D. Paulsen

Despite its recognized value in detecting and characterizing breast disease, X-ray mammography has important limitations that motivate the quest for alternatives to augment the diagnostic tools that are currently available to the radiologist. The rationale for pursuing electromagnetic methods is strong given the data in the literature, which show that the electromagnetic properties of breast malignancy are significantly different than normal in the high megahertz to low gigahertz spectral range, microwave illumination can effectively penetrate the breast at these frequencies, and the breast is a small readily accessible tissue volume, making it an ideal site for deploying advanced near-field imaging concepts that exploit model-based image reconstruction methodology. In this paper a clinical prototype of a microwave imaging system, which actively illuminates the breast with a 16-element transceiving monopole antenna array in the 300-1000 MHz range, is reported. Microwave exams have been delivered to five women through a water-coupled interface to the pendant breast with the participant positioned prone on an examination table. This configuration has been found to be a practical, comfortable approach to microwave breast imaging. Sessions lasted 10-15 min per breast and included full tomographic data acquisition at seven different array heights beginning at the chest wall and moving anteriorly toward the nipple for seven different frequencies at each array position. This clinical experience appears to be the first report of active near-field microwave imaging of the breast and is certainly the first attempt to exploit model-based image reconstructions from in vivo breast data in order to convert the measured microwave signals into spatial maps of electrical permittivity and conductivity. While clearly preliminary, the results are encouraging and have supplied some interesting findings. Specifically, it appears that the average relative permittivity of the breast as a whole correlates with radiologic breast density categorization and may be considerably higher than previously published values, which have been based on ex vivo tissue specimens.


Review of Scientific Instruments | 2004

Parallel-detection microwave spectroscopy system for breast imaging

Dun Li; Paul M. Meaney; Timothy Raynolds; Sarah A. Pendergrass; Margaret W. Fanning; Keith D. Paulsen

A liquid-coupled, noncontacting, broadband microwave imaging system has been designed and fabricated. Extension of the operating bandwidth allows us to exploit the potential of new clinical information for breast cancer diagnosis at frequencies higher than previously achieved. The new system design implements a parallel-detection scheme that allows signals to be simultaneously sampled at multiple receiving antenna sites (in 8 s for a single tomographic slice at a single frequency). It also has important features such as high cross-channel isolation (>120 dB), smooth broad bandwidth receiver response, and adjustable intermediate frequency signal amplification factors of 1 to 2000 to ensure successful realization of a large linear dynamic range which is especially important to counteract the increased signal loss at the higher operating frequencies. The new system is capable of recovering dielectric properties of breastlike phantoms with tumor inclusions over the frequency range from 0.5 to 2.1 GHz when embedded in an 87%/13% glycerin/water background. Errors in the measurement data are less than 0.5% in signal amplitude and 1° in phase, on average.


Breast Cancer Research | 2013

Microwave imaging for neoadjuvant chemotherapy monitoring: initial clinical experience

Paul M. Meaney; Peter A. Kaufman; Lori Muffly; Michael Click; Stephen P Poplack; Wendy A. Wells; Gary N. Schwartz; Roberta M. di Florio-Alexander; Tor D. Tosteson; Zhongze Li; Shireen D. Geimer; Margaret W. Fanning; Tian Zhou; Neil R. Epstein; Keith D. Paulsen

IntroductionMicrowave tomography recovers images of tissue dielectric properties, which appear to be specific for breast cancer, with low-cost technology that does not present an exposure risk, suggesting the modality may be a good candidate for monitoring neoadjuvant chemotherapy.MethodsEight patients undergoing neoadjuvant chemotherapy for locally advanced breast cancer were imaged longitudinally five to eight times during the course of treatment. At the start of therapy, regions of interest (ROIs) were identified from contrast-enhanced magnetic resonance imaging studies. During subsequent microwave examinations, subjects were positioned with their breasts pendant in a coupling fluid and surrounded by an immersed antenna array. Microwave property values were extracted from the ROIs through an automated procedure and statistical analyses were performed to assess short term (30 days) and longer term (four to six months) dielectric property changes.ResultsTwo patient cases (one complete and one partial response) are presented in detail and demonstrate changes in microwave properties commensurate with the degree of treatment response observed pathologically. Normalized mean conductivity in ROIs from patients with complete pathological responses was significantly different from that of partial responders (P value = 0.004). In addition, the normalized conductivity measure also correlated well with complete pathological response at 30 days (P value = 0.002).ConclusionsThese preliminary findings suggest that both early and late conductivity property changes correlate well with overall treatment response to neoadjuvant therapy in locally advanced breast cancer. This result is consistent with earlier clinical outcomes that lesion conductivity is specific to differentiating breast cancer from benign lesions and normal tissue.


IEEE Transactions on Biomedical Engineering | 2002

Quantification of 3-D field effects during 2-D microwave imaging

Paul M. Meaney; Keith D. Paulsen; Shireen D. Geimer; Shah A. Haider; Margaret W. Fanning

Two-dimensional (2-D) approaches to microwave imaging have dominated the research landscape primarily due to the moderate levels of measurement data, data-acquisition time, and computational costs required. Three-dimensional (3-D) approaches have been investigated in simulation, phantom, and animal experiments. While 3-D approaches are certainly important in terms of the potential to improve image quality, their associated costs are significant at this time. In addition, benchmarks are needed to evaluate these new generation systems as more 3-D methods begin to appear. In this paper, we present a systematic series of experiments which assess the capability of our 2-D system to image classical 3-D geometries. We demonstrate where current methods suffer from 3-D effects but also identify situations where they remain quite useful. Comparisons between reconstructions utilizing phantom measurements and simulated 3-D data are also shown to validate the results. These findings suggest that for certain biomedical applications, 2-D approaches remain quite attractive.


IEEE Transactions on Electromagnetic Compatibility | 2000

A conductive plastic for simulating biological tissue at microwave frequencies

John T. Chang; Margaret W. Fanning; Paul M. Meaney; Keith D. Paulsen

A conductive plastic composite that exhibits complex dielectric properties similar to biological tissues over the electromagnetic spectrum of 300-900 MHz has been synthesized from compressed carbon black mixed with a castable thermoplastic (polyethyl methacrylate). This paper presents the techniques used to control the electrical properties of the conductive plastic and describes the challenges encountered in fabricating a material containing a high proportion of carbon black. While developed to serve as a housing material for a microwave antenna array for imaging biological bodies, the composite should be useful in any setting requiring a stable, solid, high loss material that simulates biological tissues over the microwave spectrum.


Medical Physics | 2013

Integration of microwave tomography with magnetic resonance for improved breast imaging

Paul M. Meaney; Amir H. Golnabi; Neil R. Epstein; Shireen D. Geimer; Margaret W. Fanning; John B. Weaver; Keith D. Paulsen

PURPOSE Breast magnetic resonance imaging is highly sensitive but not very specific for the detection of breast cancer. Opportunities exist to supplement the image acquisition with a more specific modality provided the technical challenges of meeting space limitations inside the bore, restricted breast access, and electromagnetic compatibility requirements can be overcome. Magnetic resonance (MR) and microwave tomography (MT) are complementary and synergistic because the high resolution of MR is used to encode spatial priors on breast geometry and internal parenchymal features that have distinct electrical properties (i.e., fat vs fibroglandular tissue) for microwave tomography. METHODS The authors have overcome integration challenges associated with combining MT with MR to produce a new coregistered, multimodality breast imaging platform--magnetic resonance microwave tomography, including: substantial illumination tank size reduction specific to the confined MR bore diameter, minimization of metal content and composition, reduction of metal artifacts in the MR images, and suppression of unwanted MT multipath signals. RESULTS MR SNR exceeding 40 dB can be obtained. Proper filtering of MR signals reduces MT data degradation allowing MT SNR of 20 dB to be obtained, which is sufficient for image reconstruction. When MR spatial priors are incorporated into the recovery of MT property estimates, the errors between the recovered versus actual dielectric properties approach 5%. CONCLUSIONS The phantom and human subject exams presented here are the first demonstration of combining MT with MR to improve the accuracy of the reconstructed MT images.


Medical Physics | 2001

A two-stage microwave image reconstruction procedure for improved internal feature extraction.

Paul M. Meaney; Eugene Demidenko; Navin K. Yagnamurthy; Dun Li; Margaret W. Fanning; Keith D. Paulsen

We have developed a two-stage Gauss-Newton reconstruction process with an automatic procedure for determining the regularization parameter. The combination is utilized by our microwave imaging system and has facilitated recovery of quantitatively improved images. The first stage employs a Levenberg-Marquardt regularization along with a spatial filtering technique for a few iterations to produce an intermediate image. In effect, the first set of iterative image reconstruction steps synthesizes a priori information from the measurement data versus actually requiring physical prior information on the interrogated object. Because of the interaction of the Levenberg-Marquardt regularization and spatial filtering at each iteration, the intermediate image produced from the first reconstruction stage represents an improvement in terms of the least squared error over the initial uniform guess; however, it has not completely converged in a least squared sense. The second stage involves using this distribution as a priori information in an iteratively regularized Gauss-Newton reconstruction with a weighted Euclidean distance penalty term. The penalized term restricts the final image to a vicinity (determined by the scale of the weighting parameter) about the intermediate image while allowing more flexibility in extracting internal object structures. The second stage makes use of an empirical Bayesian/random effects model that enables an optimal determination of the weighting parameter of the penalized term. The new approach demonstrates quantifiably improved images in simulation, phantom and in vivo experiments with particularly striking improvements with respect to the recovery of heterogeneities internal to large, high contrast scatterers such as encountered when imaging the human breast in a water-coupled configuration.


International Journal of Hyperthermia | 1998

Non-invasive thermal assessment of tissue phantoms using an active near field microwave imaging technique.

John T. Chang; Keith D. Paulsen; Paul M. Meaney; Margaret W. Fanning

An active microwave imaging system for non-invasive temperature sensing has been developed and evaluated. The system is designed to assess biological tissues undergoing thermal therapy. This paper presents results that demonstrate the imaging capabilities of the microwave method using simulated and experimental phantom materials. Results from both numerical studies and laboratory experiments have been analysed and are presented. The imaging system uses a 16 channel fixed monopole array transceiver unit operating over a bandwidth of 300-900 MHz. The annular array diameter is 14.75 cm and is immersed in a 0.9% saline solution. Standard heterodyning principles are used for signal detection leading to a dynamic range of the system of better than 115dB. Image formation is accomplished with a 2-D finite element based, near-field iterative technique. This allows the simultaneous reconstruction of both the real and imaginary components of the dielectric property distribution in tissue equivalent phantoms. Data acquisition currently captures 144 complex field measurements per image. Image reconstruction requires approximately 2 min per iteration with a typical convergence in less than 10 steps. Experiments performed to evaluate the temperature dependence of biological phantoms (saline with variable salt concentrations) are described. The numerical accuracy and precision of the reconstruction algorithm based upon these phantom studies are presented. Simple laboratory models of localized hyperthermia have been used to evaluate the experimental accuracy and precision of the imaging system. A numerical precision of 0.02 degrees C and an accuracy of 0.37 degrees C have been observed with the current algorithm. In laboratory experiments, images have been reconstructed at different target temperatures and target saline concentrations. The effect of placing high contrast biological phantoms (i.e. bone/fat simulants) along with the heated objects have also been studied. Localized heating of the biological phantom is achieved by pumping a saline solution of pre-selected concentration through enclosed ends of hollow dielectric cylinders having approximately 5cm inner diameter and 4 mm wall thickness. The temperature of the heated zone is preset and maintained to +/-0.2 degrees C by an external heater and circulator. The results currently show that a maximum temperature precision of 0.98 degrees C and maximum relative accuracy of 0.56 degrees C has been achieved in the laboratory using the current generation of the prototype system.


International Journal of Biomedical Imaging | 2012

Surface wave multipath signals in near-field microwave imaging

Paul M. Meaney; Fridon Shubitidze; Margaret W. Fanning; Maciej M. Kmiec; Neil R. Epstein; Keith D. Paulsen

Microwave imaging techniques are prone to signal corruption from unwanted multipath signals. Near-field systems are especially vulnerable because signals can scatter and reflect from structural objects within or on the boundary of the imaging zone. These issues are further exacerbated when surface waves are generated with the potential of propagating along the transmitting and receiving antenna feed lines and other low-loss paths. In this paper, we analyze the contributions of multi-path signals arising from surface wave effects. Specifically, experiments were conducted with a near-field microwave imaging array positioned at variable heights from the floor of a coupling fluid tank. Antenna arrays with different feed line lengths in the fluid were also evaluated. The results show that surface waves corrupt the received signals over the longest transmission distances across the measurement array. However, the surface wave effects can be eliminated provided the feed line lengths are sufficiently long independently of the distance of the transmitting/receiving antenna tips from the imaging tank floor. Theoretical predictions confirm the experimental observations.


International Journal of Hyperthermia | 2003

Microwave thermal imaging: initial in vivo experience with a single heating zone

Paul M. Meaney; Margaret W. Fanning; Keith D. Paulsen; Dun Li; S. A. Pendergrass; Qianqian Fang; K. L. Moodie

The deployment of hyperthermia as a routine adjuvant to radiation or chemotherapy is limited largely by the inability to devise treatment plans which can be monitored through temperature distribution feedback during therapy. A non-invasive microwave tomographic thermal imaging system is currently being developed which has previously exhibited excellent correlation between the recovered electrical conductivity of a heated zone and its actual temperature change during phantom studies. To extend the validation of this approach in vivo, the imaging system has been re-configured for small animal experiments to operate within the bore of a CT scanner for anatomical and thermometry registration. A series of 5–7 day old pigs have been imaged during hyperthermia with a monopole antenna array submerged in a saline tank where a small plastic tube surgically inserted the length of the abdomen has been used to create a zone of heated saline at pre-selected temperatures. Tomographic microwave data over the frequency range of 300–1000 MHz of the pig abdomen in the plane perpendicular to the torso is collected at regular intervals after the tube saline temperatures have settled to the desired settings. Images are reconstructed over a range of operating frequencies. The tube location is clearly visible and the recovered saline conductivity varies linearly with the controlled temperature values. Difference images utilizing the baseline state prior to heating reinforces the linear relationship between temperature and imaged saline conductivity. Demonstration of in vivo temperature recovery and correlation with an independent monitoring device is an important milestone prior to clinical integration of this non-invasive imaging system with a thermal therapy device.

Collaboration


Dive into the Margaret W. Fanning's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge