Margareta Ramström
Uppsala University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Margareta Ramström.
Journal of Colloid and Interface Science | 2003
Jos Buijs; Margareta Ramström; Mikael Danfelter; Helén Larsericsdotter; P. Håkansson; Sven Oscarsson
A new method is presented for monitoring the conformational stability of various parts of a protein that is physically adsorbed onto nanometer-sized silica particles. The method employs hydrogen/deuterium (H/D) exchange of amide hydrogens, a process that is extremely sensitive to structural features of proteins. The resulting mass increase is analyzed with Fourier transform ion cyclotron resonance (FTICR) mass spectrometry. Higher structural specificity is obtained by enzymatically cleaving the adsorbed proteins prior to mass spectrometric analysis. The mass increases of four peptic fragments of myoglobin are followed as a function of the H/D exchange time. The four peptic fragments cover 90% of the myoglobin structure. Two of the peptic fragments, located in the middle of the myoglobin sequence and close to the heme group, do not show any adsorption-induced changes in their structural stability, whereas the more stable C- and N-terminal fragments are destabilized. Interestingly, for the N-terminal fragment, comprising residues 1-29, two distinct and equally large conformational populations are observed. One of these populations has a stability similar to that in solution (-23 kJ/mol), whereas the other population is highly destabilized upon adsorption (-11 kJ/mol).
The Plant Cell | 2015
Saher Mehdi; Maria Derkacheva; Margareta Ramström; Lejon Kralemann; Jonas Bergquist; Lars Hennig
The histone binding WD40-repeat protein MSI1 forms a complex with a histone deacetylase that represses abscisic acid receptor genes, thus affecting sensitivity to this phytohormone in Arabidopsis. MSI1 belongs to a family of histone binding WD40-repeat proteins. Arabidopsis thaliana contains five genes encoding MSI1-like proteins, but their functions in diverse chromatin-associated complexes are poorly understood. Here, we show that MSI1 is part of a histone deacetylase complex. We copurified HISTONE DEACETYLASE19 (HDA19) with MSI1 and transcriptional regulatory SIN3-like proteins and provide evidence that MSI1 and HDA19 associate into the same complex in vivo. These data suggest that MSI1, HDA19, and HISTONE DEACETYLATION COMPLEX1 protein form a core complex that can integrate various SIN3-like proteins. We found that reduction of MSI1 or HDA19 causes upregulation of abscisic acid (ABA) receptor genes and hypersensitivity of ABA-responsive genes. The MSI1-HDA19 complex fine-tunes ABA signaling by binding to the chromatin of ABA receptor genes and by maintaining low levels of acetylation of histone H3 at lysine 9, thereby affecting the expression levels of ABA receptor genes. Reduced MSI1 or HDA19 levels led to increased tolerance to salt stress corresponding to the increased ABA sensitivity of gene expression. Together, our results reveal the presence of an MSI1-HDA19 complex that fine-tunes ABA signaling in Arabidopsis.
FEBS Letters | 2004
Margareta Ramström; Jonas Bergquist
Knowledge of the protein and peptide content in a tissue or a body fluid is vital in many areas of medical and biomedical sciences. Information from proteomic and peptidomic studies may reveal alterations in expression due to, e.g., a disease and facilitate the understanding of the pathophysiology and the identification of biological markers. In this minireview, we discuss miniaturized proteomic and peptidomic approaches that have been applied in our laboratory in order to investigate the protein and peptide contents of body fluids (such as plasma, cerebrospinal and amniotic fluid), as well as extracted tissues. The methods involve miniaturized liquid separation, i.e., capillary liquid chromatography and capillary electrophoresis, combined with high resolution mass spectrometry (MS), i.e., Fourier transform ion cyclotron resonance MS. These approaches provide the opportunity to analyze samples of small volumes with high throughput, high sensitivity, good dynamic range and minimal sample handling. Also, the experiments are relatively easy to automate.
Biotechnology and Applied Biochemistry | 2009
Margareta Ramström; Aida Zuberovic; Caroline Grönwall; Jörg Hanrieder; Jonas Bergquist; Sophia Hober
The gene encoding Psp HJ147 UDG (Psychrobacter sp. HJ147 uracil-DNA glycosylase) was cloned and sequenced. The gene consists of 735 bp for coding a protein with 244 amino acid residues. The deduced amino acid sequence of Psp HJ147 UDG showed a high similarity to that of Psychrobacter articus, Psychrobacter cryohalolentis K5 and Psychrobacter sp. PRwf-1. The PCR-amplified Psp HJ147 UDG gene was expressed under the control of the T7lac promoter on pTYB1 in Escherichia coli BL21(DE3). The expressed enzyme was purified with IMPACT-CN (intein-mediated purification with an affinity chitin-binding tag) system. The optimum pH and temperature of the purified enzyme were 7.0-7.5 and 20-25 degrees C respectively. The optimum NaCl and KCl concentrations for the activity of the purified enzyme ranged from 50 to75 mM. The half-life of the enzyme at 50 degrees C was approx. 45 s. These heat-labile characteristics enabled Psp HJ147 UDG to control carry-over contamination in direct PCR without loss of the PCR product. Psp HJ147 UDGs contaminant control in both direct PCR and indirect PCR exhibited superiority over the UDG of the marine psychrophilic bacterium strain BMTU 3346 and that of E. coli.Various approaches for removal of high‐abundance components in body fluids are currently available. While most methods are constructed for plasma depletion, there is a need for body‐fluid‐specific strategies. The aim of the present study was to design an affinity matrix suitable for the depletion of high‐abundance proteins in CSF (cerebrospinal fluid). Hence, molecules with specific affinity towards proteins present at high concentration in CSF were desired. Affibody® molecules are specific binders of small size that have shown high stability under various conditions and are therefore good candidates for such a matrix. The protein composition in CSF resembles that in plasma. However, 20% of the proteins are brain‐derived and are therefore present in higher proportions in CSF than in plasma, whereas larger plasma‐derived proteins are less abundant in CSF. Therefore five high‐abundance CSF proteins were chosen for the design of a CSF‐specific depletion setup. Affibody® molecules with specificity towards HSA (human serum albumin), IgG, transferrin and transthyretin were combined in an affinity column. In addition, polyclonal antibodies against cystatin C were coupled to chromatographic beads and packed in a separate column. Highly reproducible and efficient removal of the five target proteins was observed. The proportion of depleted proteins were estimated to be 99, 95, 74, 92 and 83% for HSA, IgG, transferrin, transthyretin and cystatin C respectively. SDS/PAGE analysis was used for monitoring and identifying proteins in native CSF, depleted CSF samples and the captured fractions. Moreover, shotgun proteomics was used for protein identification in native as well as depleted CSF and the achieved data were compared. Enhanced identification of lower‐abundance components was observed in the depleted fraction, in terms of more detected peptides per protein.
Nature Communications | 2017
Sandra Andersson; Mårten Sundberg; Nusa Pristovsek; Ahmed M. S. Ibrahim; Philip Jonsson; Borbala Katona; Carl-Magnus Clausson; Agata Zieba; Margareta Ramström; Ola Söderberg; Cecilia Williams; Anna Asplund
The discovery of oestrogen receptor β (ERβ/ESR2) was a landmark discovery. Its reported expression and homology with breast cancer pharmacological target ERα (ESR1) raised hopes for improved endocrine therapies. After 20 years of intense research, this has not materialized. We here perform a rigorous validation of 13 anti-ERβ antibodies, using well-characterized controls and a panel of validation methods. We conclude that only one antibody, the rarely used monoclonal PPZ0506, specifically targets ERβ in immunohistochemistry. Applying this antibody for protein expression profiling in 44 normal and 21 malignant human tissues, we detect ERβ protein in testis, ovary, lymphoid cells, granulosa cell tumours, and a subset of malignant melanoma and thyroid cancers. We do not find evidence of expression in normal or cancerous human breast. This expression pattern aligns well with RNA-seq data, but contradicts a multitude of studies. Our study highlights how inadequately validated antibodies can lead an exciting field astray.
Journal of Biological Chemistry | 2014
Oskar Eriksson; Margareta Ramström; Katarina Hörnaeus; Jonas Bergquist; Dariush Mokhtari; Agneta Siegbahn
Background: The tissue factor/coagulation factor VIIa (TF/FVIIa) complex cleaves protease-activated receptor 2 (PAR2), but other non-coagulant substrates are not known. Results: Truncated isoforms of the tyrosine kinase receptors EphB2 and EphA2 were formed after FVIIa stimulation. Conclusion: EphB2 and EphA2 are identified as novel proteolytic substrates of TF/FVIIa. Significance: The results provide new insights into PAR2-independent functions of TF/FVIIa. Tissue factor (TF) binds the serine protease factor VIIa (FVIIa) to form a proteolytically active complex that can trigger coagulation or activate cell signaling. Here we addressed the involvement of tyrosine kinase receptors (RTKs) in TF/FVIIa signaling by antibody array analysis and subsequently found that EphB2 and EphA2 of the Eph RTK family were cleaved in their ectodomains by TF/FVIIa. We used N-terminal Edman sequencing and LC-MS/MS analysis to characterize the cleaved Eph isoforms and identified a key arginine residue at the cleavage site, in agreement with the tryptic serine protease activity of FVIIa. Protease-activated receptor 2 (PAR2) signaling and downstream coagulation activity was non-essential in this context, in further support of a direct cleavage by TF/FVIIa. EphB2 was cleaved by FVIIa concentrations in the subnanomolar range in a number of TF expressing cell types, indicating that the active cellular pool of TF was involved. FVIIa caused potentiation of cell repulsion by the EphB2 ligand ephrin-B1, demonstrating a novel proteolytical event to control Eph-mediated cell segregation. These results define Eph RTKs as novel proteolytical targets of TF/FVIIa and provide new insights into how TF/FVIIa regulates cellular functions independently of PAR2.
PLOS ONE | 2016
Mårten Sundberg; Emma Strage; Jonas Bergquist; Bodil Ström Holst; Margareta Ramström
Today immunoassays are widely used in veterinary medicine, but lack of species specific assays often necessitates the use of assays developed for human applications. Mass spectrometry (MS) is an attractive alternative due to high specificity and versatility, allowing for species-independent analysis. Targeted MS-based quantification methods are valuable complements to large scale shotgun analysis. A method referred to as parallel reaction monitoring (PRM), implemented on Orbitrap MS, has lately been presented as an excellent alternative to more traditional selected reaction monitoring/multiple reaction monitoring (SRM/MRM) methods. The insulin-like growth factor (IGF)-system is not well described in the cat but there are indications of important differences between cats and humans. In feline medicine IGF–I is mainly analyzed for diagnosis of growth hormone disorders but also for research, while the other proteins in the IGF-system are not routinely analyzed within clinical practice. Here, a PRM method for quantification of IGF–I, IGF–II, IGF binding protein (BP) –3 and IGFBP–5 in feline serum is presented. Selective quantification was supported by the use of a newly launched internal standard named QPrEST™. Homology searches demonstrated the possibility to use this standard of human origin for quantification of the targeted feline proteins. Excellent quantitative sensitivity at the attomol/μL (pM) level and selectivity were obtained. As the presented approach is very generic we show that high resolution mass spectrometry in combination with PRM and QPrEST™ internal standards is a versatile tool for protein quantitation across multispecies.
Biotechnology Journal | 2016
Ronnie Jansson; Cheuk H Lau; Takuya Ishida; Margareta Ramström; Mats Sandgren; My Hedhammar
Functional biological materials are a growing research area with potential applicability in medicine and biotechnology. Using genetic engineering, the possibility to introduce additional functions into spider silk-based materials has been realized. Recently, a recombinant spider silk fusion protein, Z-4RepCT, was produced intracellularly in Escherichia coli and could after purification self-assemble into silk-like fibers with ability to bind antibodies via the IgG-binding Z domain. In this study, the use of the methylotrophic yeast Pichia pastoris for production of Z-4RepCT has been investigated. Temperature, pH and production time were influencing the amount of soluble Z-4RepCT retrieved from the extracellular fraction. Purification of secreted Z-4RepCT resulted in a mixture of full-length and degraded silk proteins that failed to self-assemble into fibers. A position in the C-terminal domain of 4RepCT was identified as being subjected to proteolytic cleavage by proteases in the Pichia culture supernatant. Moreover, the C-terminal domain was subjected to glycosylation during production in P. pastoris. These observed alterations of the CT domain are suggested to contribute to the failure in fiber assembly. As alternative approach, Z-4RepCT retrieved from the intracellular fraction, which was less degraded, was used and shown to retain ability to assemble into silk-like fibers after enzymatic deglycosylation.
Biochemical and Biophysical Research Communications | 2014
Nadezda Kiselova; Tabea Dierker; Dorothe Spillmann; Margareta Ramström
Glycosaminoglycans (GAGs) are linear polysaccharides, consisting of repeated disaccharide units, attached to core proteins in all multicellular organisms. Chondroitin sulfate (CS) and dermatan sulfate (DS) constitute a subgroup of sulfated GAGs for which the degree of sulfation varies between species and tissues. One major goal in GAG characterization is to correlate structure to function. A common approach is to exhaustively degrade the GAG chains and thereafter determine the amount of component disaccharide units. In large-scale studies, there is a need for high-throughput screening methods since existing methods are either very time- or samples consuming. Here, we present a new strategy applying MALDI-TOF MS in positive ion mode for semi-qualitative and quantitative analysis of CS/DS derived disaccharide units. Only a few picomoles of sample are required per analysis and 10 samples can be analyzed in 25 min, which makes this approach an attractive alternative to many established assay methods. The total CS/DS concentration in 19 samples derived from Caenorhabditis elegans and mammalian tissues and cells was determined. The obtained results were well in accordance with concentrations determined by a standard liquid chromatography-based method, demonstrating the applicability of the method for samples from various biological matrices containing CS/DS of different sulfation degrees.
Biochemistry and biophysics reports | 2015
Mårten Sundberg; Jonas Bergquist; Margareta Ramström
As the number of fully sequenced animal genomes and the performance of advanced mass spectrometry-based proteomics techniques are continuously improving, there is now a great opportunity to increase the knowledge of various animal proteomes. This research area is further stimulated by a growing interest from veterinary medicine and the pharmaceutical industry. Cerebrospinal fluid (CSF) is a good source for better understanding of diseases related to the central nervous system, both in humans and other animals. In this study, four high-abundant protein depletion columns, developed for human or rat serum, were evaluated for dog CSF. For the analysis, a shotgun proteomics approach, based on nanoLC-LTQ Orbitrap MS/MS, was applied. All the selected approaches were shown to deplete dog CSF with different success. It was demonstrated that the columns significantly improved the coverage of the detected dog CSF proteome. An antibody-based column showed the best performance, in terms of efficiency, repeatability and the number of proteins detected in the sample. In total 983 proteins were detected. Of those, 801 proteins were stated as uncharacterized in the UniProt database. To the best of our knowledge, this is the so far largest number of proteins reported for dog CSF in one single study.