Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sandra Andersson is active.

Publication


Featured researches published by Sandra Andersson.


Blood | 2010

Expression patterns of NKG2A, KIR, and CD57 define a process of CD56dim NK cell differentiation uncoupled from NK cell education

Niklas K. Björkström; Peggy Riese; Frank Heuts; Sandra Andersson; Cyril Fauriat; Martin A. Ivarsson; Andreas Björklund; Malin Flodström-Tullberg; Jakob Michaëlsson; Martin E. Rottenberg; Carlos A. Guzmán; Hans-Gustaf Ljunggren; Karl-Johan Malmberg

Natural killer (NK) cells are lymphocytes of the innate immune system that, following differentiation from CD56(bright) to CD56(dim) cells, have been thought to retain fixed functional and phenotypic properties throughout their lifespan. In contrast to this notion, we here show that CD56(dim) NK cells continue to differentiate. During this process, they lose expression of NKG2A, sequentially acquire inhibitory killer cell inhibitory immunoglobulin-like receptors and CD57, change their expression patterns of homing molecules, and display a gradual decline in proliferative capacity. All cellular intermediates of this process are represented in varying proportions at steady state and appear, over time, during the reconstitution of the immune system, as demonstrated in humanized mice and in patients undergoing hematopoietic stem cell transplantation. CD56(dim) NK-cell differentiation, and the associated functional imprint, occurs independently of NK-cell education by interactions with self-human leukocyte antigen class I ligands and is an essential part of the formation of human NK-cell repertoires.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Morphological abnormalities in the brains of estrogen receptor β knockout mice

Ling Wang; Sandra Andersson; Margaret Warner; Jan Åke Gustafsson

Estrogen receptor β (ERβ) is expressed at high levels in both neurons and glial cells of the central nervous system. The development of ERβ knockout (BERKO) mice has provided a model to study the function of this nuclear receptor in the brain. We have found that the brains of BERKO mice show several morphological abnormalities. There is a regional neuronal hypocellularity in the brain, with a severe neuronal deficit in the somatosensory cortex, especially layers II, III, IV, and V, and a remarkable proliferation of astroglial cells in the limbic system but not in the cortex. These abnormalities are evident as early as 2 mo of age in BERKO mice. As BERKO mice age, the neuronal deficit becomes more pronounced, and, by 2 yr of age, there is degeneration of neuronal cell bodies throughout the brain. This is particularly evident in the substantia nigra. We conclude that ERβ is necessary for neuronal survival and speculate that this gene could have an important influence on the development of degenerative diseases of the central nervous system, such as Alzheimers disease and Parkinsons disease, as well as those resulting from trauma and stroke in the brain.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Liver X receptors in the central nervous system: From lipid homeostasis to neuronal degeneration

Ling Wang; Gertrud U. Schuster; Kjell Hultenby; Qinghong Zhang; Sandra Andersson; Jan Åke Gustafsson

Liver X receptors (LXRα and -β) are nuclear receptors abundant in the liver where they are regulators of lipid homeostasis. Both LXRs are also expressed in the brain, but their roles in this tissue remain to be clarified. We examined the brains of mice in which the genes of both LXRα and -β have been disrupted and found several severe abnormalities. One of the most striking features is that the lateral ventricles are closed and lined with lipid-laden cells. In addition, there are enlarged brain blood vessels, especially in the pars reticularis of the substantia nigra and in the globus pallidus. Other features of the brains are excessive lipid deposits, proliferation of astrocytes, loss of neurons, and disorganized myelin sheaths. Electron micrographs revealed that, as mice aged, lipid vacuoles accumulated in astrocytes surrounding blood vessels. Comparison of mRNA profiles in LXR knockout mice and wild-type littermates showed that expression of several LXR target genes involved in cholesterol efflux from astrocytes was reduced. These findings show that LXRs have an important function in lipid homeostasis in the brain, and that loss of these receptors results in neurodegenerative diseases. Further characterization of the role of LXRs in the brain could lead to new insights into the etiology and treatment of some neurodegenerative disorders.


FEBS Letters | 2003

Update on estrogen signaling

Zhang Weihua; Sandra Andersson; Guojun Cheng; Evan R. Simpson; Margaret Warner; Jan Åke Gustafsson

Our understanding of estrogen signaling has undergone a true paradigm shift over recent years, following the discovery in 1995 of a second estrogen receptor, estrogen receptor β (ERβ). In many contexts ERβ appears to antagonize the actions of ERα (yin/yang relationship) although there also exist genes that are specifically regulated by one of the two receptors. Studies of ERβ knockout mice have shown that ERβ exerts important functions in the ovary, central nervous system, mammary gland, prostate gland, hematopoiesis, immune system, vessels and bone. The use of ERβ‐specific ligands against certain forms of cancer represents one of the many pharmaceutical possibilities that have been created thanks to the discovery of ERβ.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Estrogen receptor (ER)β knockout mice reveal a role for ERβ in migration of cortical neurons in the developing brain

Ling Wang; Sandra Andersson; Margaret Warner; Jan Åke Gustafsson

The present study stems from our previous observations that the brains of adult estrogen receptor β knockout (ERβ−/−) mice show regional neuronal hypocellularity especially in the cerebral cortex. We now show that ERβ is necessary for late embryonic development of the brain and is involved in both neuronal migration and apoptosis. At embryonic day (E)18.5, ERβ−/− mouse brains were smaller than those of the wild-type (WT) littermates, and there were fewer neurons in the cortex. There were no differences in size or cellularity at E14.5. When proliferating cells were labeled with 5′-bromodeoxyuridine (BrdUrd) on E12.5, a time when cortical neurogenesis in mice begins, and examined on E14.5, there was no difference between WT and ERβ−/− mice in the number of labeled cells in the cortex. However, when BrdUrd was administered between E14.5 and E16.5, a time when postmitotic neurons migrate to layers of the cortex, there were fewer BrdUrd-labeled cells in the superficial cortical layers by E18.5 and postnatal day 14 in mice lacking ERβ. At E18.5, there were more apoptotic cells in the ventricular zone of mice lacking ERβ. In addition, the processes of the cortical radial glia, which are essential for guiding the migrating neurons, were fragmented. These findings suggest that by influencing migration and neuronal survival, ERβ has an important role in brain development.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Disruption of the estrogen receptor β gene in mice causes myeloproliferative disease resembling chronic myeloid leukemia with lymphoid blast crisis

Gil Jin Shim; Ling Wang; Sandra Andersson; Noémi M. Nagy; Loránd L. Kis; Qinghong Zhang; Sari Mäkelä; Margaret Warner; Jan Åke Gustafsson

Proliferation of pluripotent, bone marrow stem cells, which develop to lymphoid and myeloid progenitors, is negatively regulated by estrogen. Although in estrogen deficiency and in estrogen receptor knockout mice there is significant alteration in bone marrow hematopoiesis, the effects of aging on estrogen receptor deficiencies in mice have not been investigated yet. In this study we show that by 1.5 years of age, estrogen receptor β knockout (ERβ–/–) mice develop pronounced splenomegaly that is much more severe in females than in males. Further characterization of these mice revealed myelogenous hyperplasia in bone marrow, an increase in the number of granulocytes and B lymphocytes in blood, lymphadenopathy, and infiltration of leukocytes in the liver and lung. Analysis by flow cytometry of the bone marrow cells revealed that the percentage and total number of Gr-1hi/Mac-1hi-positive granulocytes were increased by 15–30% and 100%, respectively. The numbers of B cells in the bone marrow and spleen were significantly higher in ERβ–/– mice than in WT littermates. Some of the ERβ–/– mice also had a severe lymphoproliferative phenotype. Thus the absence of ERβ results in a myeloproliferative disease resembling human chronic myeloid leukemia with lymphoid blast crisis. Our results indicate a previously unknown role for ERβ in regulating the differentiation of pluripotent hematopoietic progenitor cells and suggest that the ERβ–/– mouse is a potential model for myeloid and lymphoid leukemia. Furthermore, we suggest that ERβ agonists might have clinical value in the treatment of leukemia.


Blood | 2009

KIR acquisition probabilities are independent of self-HLA class I ligands and increase with cellular KIR expression

Sandra Andersson; Cyril Fauriat; Jenny-Ann Malmberg; Hans-Gustaf Ljunggren; Karl-Johan Malmberg

Inhibitory killer cell immunoglobulin-like receptors (KIRs) preserve tolerance to self and shape the functional response of human natural killer (NK) cells. Here, we have evaluated the influence of selection processes in the formation of inhibitory KIR repertoires in a cohort of 44 donors homozygous for the group A KIR haplotype. Coexpression of multiple KIRs was more frequent than expected by the product rule that describes random association of independent events. In line with this observation, the probability of KIR acquisition increased with the cellular expression of KIRs. Three types of KIR repertoires were distinguished that differed in frequencies of KIR- and NKG2A-positive cells but showed no dependency on the number of self-HLA class I ligands. Furthermore, the distribution of self- and nonself-KIRs at the cell surface reflected a random combination of receptors rather than a selection process conferred by cognate HLA class I molecules. Finally, NKG2A was found to buffer overall functional responses in KIR repertoires characterized by low-KIR expression frequencies. The results provide new insights into the formation of inhibitory KIR repertoires on human NK cells and support a model in which variegated KIR repertoires are generated through sequential and random acquisition of KIRs in the absence of selection.


Journal of Immunology | 2008

Estimation of the Size of the Alloreactive NK Cell Repertoire: Studies in Individuals Homozygous for the Group A KIR Haplotype

Cyril Fauriat; Sandra Andersson; Andreas Björklund; Mattias Carlsten; Marie Schaffer; Niklas K. Björkström; Bettina C. Baumann; Jakob Michaëlsson; Hans-Gustaf Ljunggren; Karl-Johan Malmberg

Stem cell transplantation across HLA barriers may trigger NK cell-mediated graft-vs-leukemia effects leading to improved survival for patients with hematological malignancies. However, the genetic algorithm based on killer cell Ig-like receptor (KIR) and HLA genes used to predict NK cell alloreactivity have yielded discrepant results. Accordingly, it has been difficult to define transplantation settings that favor NK cell alloreactivity. In this study, we have used multiparameter flow cytometry to simultaneously analyze the cell surface expression of all four major inhibitory KIR and CD94/NKG2A to determine the size of the alloreactive NK cell repertoires in 31 individuals homozygous for the group A KIR haplotype. We observed a vast variability in the frequencies of cells with an alloreactive potential, ranging from 0 to 62% of the total NK cell population depending on which, and how many, KIR ligands were missing in theoretical recipients. This analysis required a functional examination of KIR3DL2-single positive NK cells, showing that this subset was hyporesponsive in individuals harboring the cognate ligands HLA-A3/A11. The results provide new insights into the variability of the functional alloreactive NK cell repertoire and have implications for donor selection in hematopoietic stem cell transplantation and adoptive NK cell-based immunotherapy.


Cancer Research | 2008

Identification of c-Cbl as a New Ligase for Insulin-like Growth Factor-I Receptor with Distinct Roles from Mdm2 in Receptor Ubiquitination and Endocytosis

Bita Sehat; Sandra Andersson; Leonard Girnita; Olle Larsson

The insulin-like growth factor receptor (IGF-IR) plays several pivotal roles in cancer. Although most studies on the function of the IGF-IR have been attributed to kinase-dependent signaling, recent findings by our group and others have implicated biological roles mediated by ubiquitination of the receptor. As previously reported, the E3 ligases Mdm2 and Nedd4 mediate IGF-IR ubiquitination. Here we show that c-Cbl is a novel E3 ligase for IGF-IR. On ligand stimulation, both Mdm2 and c-Cbl associate with IGF-IR and mediate receptor polyubiquitination. Whereas Mdm2 catalyzed lysine 63 (K63) chain ubiquitination, c-Cbl modified IGF-IR through K48 chains. Mdm2-mediated ubiquitination occurred when cells were stimulated with a low concentration (5 ng/mL) of IGF-I, whereas c-Cbl required high concentrations (50-100 ng/mL). Mdm2-ubiquitinated IGF-IR was internalized through the clathrin endocytic pathway whereas c-Cbl-ubiquitinated receptors were endocytosed via the caveolin route. Taken together, our results show that c-Cbl constitutes a new ligase responsible for the ubiquitination of IGF-IR and that it complements the action of Mdm2 on ubiquitin lysine residue specificity, responsiveness to IGF-I, and type of endocytic pathway used. The actions and interactions of Mdm2 and c-Cbl in the ubiquitination and endocytosis of IGF-IR may have implications in cancer. In addition, identification and functional characterization of new E3 ligases are important in itself because therapeutic targeting of substrate-specific E3 ligases is likely to represent a critical strategy in future cancer treatment.


Cancer Immunology, Immunotherapy | 2008

NK cell-mediated targeting of human cancer and possibilities for new means of immunotherapy

Karl-Johan Malmberg; Yenan T. Bryceson; Mattias Carlsten; Sandra Andersson; Andreas Björklund; Niklas K. Björkström; Bettina C. Baumann; Cyril Fauriat; Evren Alici; M. Sirac Dilber; Hans-Gustaf Ljunggren

Insights into the molecular basis for natural killer (NK) cell recognition of human cancer have been obtained in recent years. Here, we review current knowledge on the molecular specificity and function of human NK cells. Evidence for NK cell targeting of human tumors is provided and new strategies for NK cell-based immunotherapy against human cancer are discussed. Based on current knowledge, we foresee a development where more cancers may be subject to treatment with drugs or other immunomodulatory agents affecting NK cells, either directly or indirectly. We also envisage a possibility that certain forms of cancers may be subject to treatment with adoptively transferred NK cells, either alone or in combination with other therapeutic interventions.

Collaboration


Dive into the Sandra Andersson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Margaret Warner

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar

Olle Larsson

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leonard Girnita

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ling Wang

Karolinska Institutet

View shared research outputs
Top Co-Authors

Avatar

Hans-Gustaf Ljunggren

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge