Margarida J. Quina
University of Coimbra
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Margarida J. Quina.
Waste Management | 2009
Margarida J. Quina; João C. Bordado; Rosa M. Quinta-Ferreira
The influence of pH on the leaching behaviour of air pollution control (APC) residues produced in municipal solid waste incineration (MSWI) is addressed in this study. The residue is considered hazardous waste, and in accordance with their chemical properties, the leaching of contaminants into the environment is the main concern. Several leaching tests can be used for research studies or regulatory purposes, where a wide variety of conditions may be tested. Our work deals mainly with the leaching behaviour of toxic heavy metals (Pb, Cd, Zn, Cr, Ni, Cu) and inorganics associated with soluble salts (Na, K, Ca, Cl). The main goal is to obtain an overview of the leachability of APC residues produced in a Portuguese MSWI process. Among the different variables that may have influence on the leaching behaviour, pH of the leachant solution is the most important one, and was evaluated through pH static tests. The acid neutralization capacity (ANC) of the residue was also determined, which is in the range of 6.2-6.8 meq g(-1) (for pH=7) and 10.1-11.6 meq g(-1) (for pH=4). The analysis of the leaching behaviour is particularly important when the leaching is solubility controlled. The amphoteric behaviour of some elements was observed, namely for Pb and Zn, which is characterized through high solubilization at low and high pH and moderate or low solubility at neutral or moderate high pH. The solubility curves for Pb, Cd, Zn, Cr, Ni and Cu as a function of pH were obtained, which are very useful for predicting the leaching behaviour in different scenarios. The solubility of K and Na reveals to be nearly independent of the solution pH and the released amount is mainly availability-controlled. Moreover, the pH static test showed that Cl(-) is the most pH-independent species. The APC residue turns out to be a hazardous waste because of the high leaching of lead and chloride. On the other hand, leaching of elements like cadmium, nickel and copper is limited by the high pH of the residue, and as long as the waste keeps its ANC, the risk of mobilization of these elements is low.
Journal of Colloid and Interface Science | 2012
M.L.N. Perdigoto; Rui C. Martins; Nuno Rocha; Margarida J. Quina; Licínio M. Gando-Ferreira; R. Patrício; Luísa Durães
This work is devoted to the application of hydrophobic silica based aerogels and xerogels for the removal of three toxic organic compounds from aqueous solutions. These materials were tested and characterized regarding their morphology, particle size distribution, surface area and porous structure. The equilibrium tests were carried out at different adsorbate concentrations and the experimental data were correlated by means of Langmuir and Freundlich isotherms. The equilibrium data were well described by Langmuir and Freundlich in most cases. The maximum adsorption capacity by Langmuir model was observed for the adsorption of benzene onto aerogel (192.31 mg/g), though the most promising results were obtained for toluene adsorption due to the greater adsorption energy involved. Comparing these results with other reported results, the hydrophobic silica based aerogels/xerogels were found to exhibit a remarkable performance for the removal of benzene and toluene. In addition, the regeneration of previously saturated aerogel/toluene was also investigated by using an ozonation process. The adsorption/regeneration tests with ozone oxidation showed that the aerogel might be regenerated, nevertheless the materials lost their hydrophobicity and thus different methods should be evaluated in forthcoming investigations.
Journal of Hazardous Materials | 2010
Margarida J. Quina; João C. Bordado; Rosa M. Quinta-Ferreira
The by-products of the municipal solid waste incineration (MSWI) generally contain hazardous pollutants, with particular relevance to air pollution control (APC) residues. This waste may be harmful to health and detrimental to the environmental condition, mainly due to soluble salts, toxic heavy metals and trace organic compounds. Solidification/stabilization (S/S) with binders is a common industrial technology for treating such residues, involving however, a significant increase in the final mass that is landfilled. In our work, the chemical stabilization of APC residues by using NaHS x xH(2)O, H(3)PO(4), Na(2)CO(3), C(5)H(10)NNaS(2) x 3 H(2)O, Na(2)O x SiO(2) was investigated, and it was possible to conclude that all these additives lead to an improvement of the stabilization process of the most problematic heavy metals. Indeed, compliance leaching tests showed that after the stabilization treatment the waste becomes non-hazardous with respect to heavy metals. Chromium revealed to be a problematic metal, mainly when H(3)PO(4), Na(2)CO(3) and Na(2)O x SiO(2) were used for stabilization. Nevertheless, soluble phosphates are the most efficient additives for stabilizing the overall metals. The effect of the additives tested on the elements associated with soluble salts (K, Na, Cl(-)) is almost negligible, and therefore, the soluble fraction is hardly reduced without further treatment, such as pre-washing.
Journal of Hazardous Materials | 2009
Sofia A. Cavaco; Sandra Fernandes; C.M. Augusto; Margarida J. Quina; Licínio M. Gando-Ferreira
In this study two chelating resins containing iminodiacetic acid groups (Amberlite IRC 748 and Diaion CR 11) and a chelating resin based on sulfonic and diphosphonic acid groups (Diphonix) were investigated in order to separate Cr(III) from industrial effluents produced in hard and decorative electroplating. Samples of two industrial plants were characterized during a period of about one year and a half in terms of the metals content (Cr, Cu, Na, Ca, Fe and Ni), Total Suspended Solids (TSS), Total Dissolved Solids (TDS), Chemical Oxygen Demand (COD) and pH. Some of the physical properties of the resins, namely the moisture content, apparent density, intraparticle porosity and the particle size distribution were also evaluated. To quantify the sorption capacity of the resins, batch experiments were performed using synthetic solutions of Cr(III), as well as solutions of Fe in the case of Diphonix. The Langmuir and Langmuir-Freundlich isotherms enabled a good description of the ion-exchange equilibrium data, and the maximum sorption capacity determined for Amberlite and Diaion was 3.6 mequiv./g(dry resin). For Diphonix that parameter was 3.4 mequiv./g(dry resin). The Diphonix resin exhibits a high selectivity for transition metals (Fe, Ni) over the chromium trivalent. Therefore, it was screened as the most suitable for selectively removing those metal impurities from chromium electroplating effluents. For this resin, the sorption capacity is strongly dependent on the initial pH of the solution. Though, high regeneration efficiencies of Diphonix for stripping Cr(III) were found by using a mixture of NaOH/H(2)O(2). The mathematical model tested for describing the dynamics of the process allowed a good fitting to the experimental data and enabled the estimation of effective pore diffusivity of Cr(III). The saturations of Diphonix with industrial effluents demonstrated that the breakthrough capacity of the resin is affected by the presence of other species in solution, such as Fe and Ni. Nevertheless, these effluents may be treated with this resin, being possible to separate Cr(III) from other transition metallic ions in solution.
Waste Management | 2011
Margarida J. Quina; João C. Bordado; Rosa M. Quinta-Ferreira
In this study, percolation and batch leaching tests were considered in order to characterize the behaviour of air pollution control (APC) residues produced in a municipal solid waste incinerator (MSWI) as a function of the liquid to solid ratio (L/S). This waste is hazardous, and taking into account their physical and chemical properties, leaching of contaminants into the environment is the main concern. In our work the leaching behaviour of toxic heavy metals (Pb, Zn, Cr, Ni and Cu) and inorganics associated with soluble salts (Na, K, Ca and Cl) was addressed. Although pH of the leaching solution is the most important variable, L/S may also play an important role in leaching processes. In our work, results from column and batch tests were compared in terms of concentration (mg/L) and releasing (mg/kg). The APC residues revealed to be hazardous according to both tests, and both Pb and Cl(-) far exceeded the regulatory thresholds. The material exhibits high solubility, and when the liquid to solid ratio was high, more than 50% can be solubilised. The patterns of release may be in some cases availability or solubility controlled, and the former was easier to identify. When the results from column and batch experiments were compared by representing the cumulative released amounts (in mg/kg) as a function of L/S, both curves match for Zn, Ni, Cu, K, Na, Cl and Ca, but for Cr and Pb a significant difference was observed. In fact, the column experiments revealed that under percolation conditions it should be expected slow releasing of Pb along time. From this study, it can be concluded that the released amounts obtained in batch experiments for a certain L/S should be considered as the worst case for medium term. Some simple models proposed on the literature and based on local equilibrium assumption showed good fitting to experimental data for soluble species (non-reactive solutes).
Waste Management | 2014
Margarida J. Quina; João C. Bordado; Rosa M. Quinta-Ferreira
This work focuses on the assessment of technological properties and on the leaching behavior of lightweight aggregates (LWA) produced by incorporating different quantities of air pollution control (APC) residues from municipal solid waste (MSW) incineration. Currently this hazardous waste has been mostly landfilled after stabilization/solidification. The LWA were produced by pelletizing natural clay, APC residues as-received from incineration plant, or after a washing treatment, a small amount of oil and water. The pellets were fired in a laboratory chamber furnace over calcium carbonate. The main technological properties of the LWA were evaluated, mainly concerning morphology, bulk and particle densities, compressive strength, bloating index, water adsorption and porosity. Given that APC residues do not own expansive (bloating) properties, the incorporation into LWA is only possible in moderate quantities, such as 3% as received or 5% after pre-washing treatment. The leaching behavior of heavy metals from sintered LWA using water or acid solutions was investigated, and despite the low acid neutralization capacity of the synthetic aggregates, the released quantities were low over a wide pH range. In conclusion, after a washing pre-treatment and if the percentage of incorporation is low, these residues may be incorporated into LWA. However, the recycling of APC residues from MSW incineration into LWA does not revealed any technical advantage.
Chemical Engineering Science | 2000
Margarida J. Quina; Rosa Ferreira
The start-up and the wrong-way behavior of a fixed-bed reactor were analyzed through one-dimensional heterogeneous and pseudo-homogeneous models. The simulation work was based on the methanol oxidation to formaldehyde, which takes place in a fixed-bed reactor with two distinct zones. In the first part of the reactor, the catalyst was diluted with inert, and in the second zone the catalyst is pure. This activity profile leads to new features on the start-up and wrong-way behavior of the system when compared with a uniform catalytic bed. For a partially diluted bed, when the inlet temperature is increased (decreased), the final steady state can show a hot spot lower (higher) than the initial one. This behavior is not observed in a one-zone bed, where the final steady-state maximum temperature is always higher (lower) than the initial one if the inlet temperature is submitted to a positive (negative) change. During the dynamic period, the transient profiles are closer to the initial steady states in the case of the two-zone bed, pointing out that the catalyst dilution in the upstream section of the reactor can decrease the system sensitivity in both steady state and dynamic period. The differences between the predictions obtained through the pseudo-homogeneous and the heterogeneous models can be more significant on the transient responses than on the steady state situations and the wall temperature is the most important parameter on the reactor dynamic response. Moreover, significant wrong-way behavior can occur for step changes and ramp variations in feed and wall temperatures.
Chemical Engineering Journal | 1999
Margarida J. Quina; Rosa Ferreira
In this work, comparisons between the behaviour predicted by different types of mathematical models are presented. The system studied was the partial oxidation of methanol to formaldehyde, which occurs in a fixed bed reactor with two distinct zones: at the entrance the catalyst is diluted with inert, followed by a region with pure catalyst. This type of distribution of the catalyst activity leads to different temperature and concentration profiles, when compared with those obtained by a uniform activity bed. Parametric sensitivity is examined for all the dimensionless parameters associated to the different mathematical models of the reactor. The parametric sensitivity analysis shows that the system is particularly sensitive to the wall temperature and almost insensitive to the side reaction and mass transfer parameters.
Bioresource Technology | 2013
Micaela A.R. Soares; Margarida J. Quina; Rosa M. Quinta-Ferreira
Industrial eggshell waste (ES) is classified as an animal by-product not intended to human consumption. For reducing pathogen spreading risk due to soil incorporation of ES, sanitation by composting is a pre-treatment option. This work aims to evaluate eggshell waste recycling in self-heating composting reactors and investigate ES effect on process evolution and end product quality. Potato peel, grass clippings and rice husks were the starting organic materials considered. The incorporation of 30% (w/w) ES in a composting mixture did not affect mixture biodegradability, nor its capacity to reach sanitizing temperatures. After 25 days of composting, ES addition caused a nitrogen loss of about 10 g N kg(-1) of initial volatile solids, thus reducing nitrogen nutritional potential of the finished compost. This study showed that a composting mixture with a significant proportion of ES (30% w/w) may be converted into calcium-rich marketable compost to neutralize soil acidity and/or calcium deficiencies.
Journal of Hazardous Materials | 2014
Margarida J. Quina; João C. Bordado; Rosa M. Quinta-Ferreira
This study focuses on the stabilisation/solidification (S/S) treatment of air pollution control (APC) residues from municipal solid waste (MSW) incineration. Six formulations (T1-T6) were tested based on different cements as binders, for the immobilisation of pollutants and to prevent their entering into the environment at unacceptable rates. Soluble phosphates and silicates were considered in some cases to fix heavy metals. The performance of T1-T6 products was measured in terms of initial and final setting times, mechanical strength, total availability and leaching from S/S products. Two monolithic leaching tests were used to estimate emissions of pollutants over 48h and 64 days. The results showed that the setting time was reduced when soluble phosphates were used. Moreover, although all the treatments have met the threshold of 1MPa for unconfined compressive strength, this parameter was significantly reduced due to matrix dissolution during immersion. After three cycles of leaching, the limit of 10% for solubilisation was exceeded for all treatments with the exception of T5 (with phosphates). This study demonstrated that the S/S treatment used at the industrial level can be improved with respect to toxic heavy metals, by using soluble silicates or phosphates, but not regarding soluble salts.