Margrit Schubiger
University of Washington
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Margrit Schubiger.
Developmental Biology | 1987
Margrit Schubiger; John Palka
Using an antibody against bromodeoxyuridine we have analyzed the distribution of S-phase nuclei in the wing disc of Drosophila as the larval disc transforms into the adult wing during metamorphosis. On the basis of the timing of replication three cell populations can be distinguished: the cells of the presumptive wing margin, the precursor cells of the longitudinal veins, and those of the intervein regions. In each of these populations the cell cycle is first arrested and later resumes at a specific time, so that at each developmental time point a characteristic spatial pattern of S-phase nuclei is seen. An interpretation of these changing patterns in terms of vein formation, compartments, and neural development is offered.
Developmental Biology | 1984
Marjorie A. Murray; Margrit Schubiger; John Palka
Sensory neurons in the wing of Drosophila originate locally from epithelial cells and send their axons toward the base of the wing in two major bundles, the L1 and L3 nerves. We have estimated the birth times of a number of identified wing sensory neurons using an X-irradiation technique and have followed the appearance of their somata and axons by means of an immunohistochemical stain. These cells become immunoreactive and begin axon growth in a sequence which mirrors the sequence of their birth times. The earliest ones are born before pupariation and begin axonogenesis within 1 to 2 hr after the onset of metamorphosis; the last are born and differentiate some 12 to 14 hr later. The L1 and L3 nerves are formed in sections, with specific neurons pioneering defined stretches of the pathways during the period between 0 and 4 hr after pupariation (AP), and finally joining together around 12 hr AP. By 16 hr AP the adult complement of neurons is present and the adult peripheral nerve pattern has been established. Pathway establishment appears to be specified by multiple cues. In places where neurons differentiate in close proximity to one another, random filopodial exploration followed by axon growth to a neighboring neuron soma might be the major factor leading to pathway construction. In other locations, filopodial contact between neighboring somata does not appear to occur, and axon pathways joining neural neighbors by the most direct route are not established. We propose that in these cases additional factors, including veins which are already present at the time of axonogenesis, influence the growth of axons through non-neural tissues.
Mechanisms of Development | 2003
Margrit Schubiger; Shuichiro Tomita; Carl Sung; Steven Robinow; James W. Truman
The steroid hormone 20-hydroxyecdysone induces metamorphosis in insects. The receptor for the hormone is the ecdysone receptor, a heterodimer of two nuclear receptors, EcR and USP. In Drosophila the EcR gene encodes 3 isoforms (EcR-A, EcR-B1 and EcR-B2) that vary in their N-terminal region but not in their DNA binding and ligand binding domains. The stage and tissue specific distribution of the isoforms during metamorphosis suggests distinct functions for the different isoforms. By over-expressing the three isoforms in animals we present results supporting this hypothesis. We tested for the ability of the different isoforms to rescue the lack of dendritic pruning that is characteristic of mutants lacking both EcR-B1 and EcR-B2. By expressing the different isoforms specifically in the affected neurons, we found that both EcR-B isoforms were able to rescue the neuronal defect cell autonomously, but that EcR-A was less effective. We also analyzed the effect of over-expressing the isoforms in a wild-type background. We determined a sensitive period when high levels of either EcR-B isoform were lethal, indicating that the low levels of EcR-B at this time are crucial to ensure normal development. Over-expressing EcR-A in contrast had no detrimental effect. However, high levels of EcR-A expressed in the posterior compartment suppressed puparial tanning, and resulted in down-regulation of some of the tested target genes in the posterior compartment of the wing disc. EcR-B1 or EcR-B2 over-expression had little or no effect.
Neuron | 1994
Margrit Schubiger; Yuanyi Feng; Douglas M. Fambrough; John Palka
Abstract A bang-sensitive enhancer trap line was isolated in a behavioral screen. The flies show a weak bang-sensitive paralysis, recovering after about 7 s. The P element insert is localized at 93131-2 on the salivary chromosomes, the site of the (Na + ,K + )ATPase a subunit gene. Molecular characterization demonstrates that the transposon is inserted into the first intron of this gene. This insertion leads to normal-sized transcripts, but reduced levels of expression. This change is also reflected in lower amounts of a normal-sized a subunit protein. Mutant flies show a much greater sensitivity to ouabain, likewise indicating, on a functional level, a reduction in Na + pump activity. Furthermore, the bang-sensitive behavior can also be mimicked by injecting sublethal doses of ouabain into wild-type flies. The molecular and functional evidence indicates that the insertion has produced a hypomorphic mutation of the (Na + ,K + )ATPase α subunit gene, opening the way to future studies of the regulation of the Na + pump.
Developmental Biology | 2010
Margrit Schubiger; Anne Sustar; Gerold Schubiger
Imaginal discs of Drosophila have the remarkable ability to regenerate. After fragmentation wound healing occurs, ectopic wg is induced and a blastema is formed. In some, but not all fragments, the blastema will replace missing structures and a few cells can become more plastic and transdetermine to structures of other discs. A series of systematic cuts through the first leg disc revealed that a cut must transect the dorsal-proximal disc area and that the fragment must also include wg-competent cells. Fragments that fail to both transdetermine and regenerate missing structures will do both when provided with exogenous Wg, demonstrating the necessity of Wg in regenerative processes. In intact leg discs ubiquitously expressed low levels of Wg also leads to blastema formation, regeneration and transdetermination. Two days after exogenous wg induction the endogenous gene is activated, leading to elevated levels of Wg in the dorsal aspect of the leg disc. We identified a wg enhancer that regulates ectopic wg expression. Deletion of this enhancer increases transdetermination, but lowers the amount of ectopic Wg. We speculate that this lessens repression of dpp dorsally, and thus creates a permissive condition under which the balance of ectopic Wg and Dpp is favorable for transdetermination.
Developmental Biology | 1983
John Palka; Margrit Schubiger; Richard L. Ellison
We have analyzed the growth of axons in the wings of the mutants Hairy wing and hairy of Drosophila melanogaster. These mutants produce many supernumerary bristle organs and sensilla campaniformia, whose axons grow between the two wing epithelia and can be visualized in both pupal and adult stages. The sensory axons of wild-type animals follow two paths in the wing, within longitudinal veins L1 and L3, and always grow with a distal to proximal polarity. In the mutants, all axons following these two paths likewise grow with correct polarity. Axons elsewhere in the wing, however, are found to grow in many different directions, including from proximal to distal and hence directly away from the central nervous system. A variety of patterns of axon growth and fasciculation are seen in different individuals. Only if the supernumerary axons encounter the two normal paths do they reliably grow toward the base of the wing. We conclude that these two paths provide polarity information for axon growth, information which is either not used or not available elsewhere in the wing in spite of the obvious morphological polarization of every epithelial cell. The time course of neural differentiation suggests that the normal sensory cells of mutant wings, which grow axons relatively early, may be the source of polarity information for the later-differentiating supernumerary cells.
Developmental Biology | 1978
Gerold Schubiger; Margrit Schubiger
Abstract For an appendage to regenerate distal elements, it has been thought that the stump must contain a full set of circumferential positional information. We have shown that this rule is not binding for tarsus regeneration in the male foreleg imaginal disc of Drosophila melanogaster . Distal transformation was not restricted to fragments containing complete proximal segments, but was also observed in pieces with small or even substantial deficiencies that were not regenerated in their proximal segments.
Developmental Biology | 1985
Margrit Schubiger; John Palka
In the developing wing of Drosophila a set of early differentiating neurons pioneer the axon courses observed in the adult. The possibility that these first cells are indispensable for establishing the normal neural pathways has been tested. The differentiation of particular neurons was suppressed by inducing cell clones homozygous for two scute deficiencies, mutations that inhibit the differentiation of sensilla and their associated neurons. From the analysis of the nerve patterns in wings lacking specific sensilla, it has been demonstrated that none of the identified neurons are essential for guiding other axons along the correct path. However, the possibility remains that the presence of certain cells may increase the probability of establishing the normal pattern of peripheral nerves.
Basic life sciences | 1980
John Palka; Margrit Schubiger
The larva of a fly possesses a complex nervous system which enables it to seek and recognize food, eat, avoid obstacles and dangers, regulate the release of hormones, respond to hormonal changes — in other words, to behave in an integrated fashion. It is in every sense a fully functioning organism.
Developmental Biology | 2011
Anne Sustar; Marianne Bonvin; Margrit Schubiger; Gerold Schubiger
Cell proliferation is required for tissue regeneration, yet the dynamics of proliferation during regeneration are not well understood. Here we investigated the proliferation of eye and leg regeneration in fragments of Drosophila imaginal discs. Using twin spot clones, we followed the proliferation and fates of sister cells arising from the same mother cell in the regeneration blastema. We show that the mother cell gives rise to two sisters that participate equally in regeneration. However, when cells switch disc identity and transdetermine to another fate, they fail to turn off the cell cycle and continue dividing long after regeneration is complete. We further demonstrate that the regeneration blastema moves as a sweep of proliferation, in which cells are displaced. Our results suggest that regenerating cells stop dividing once the missing parts are formed, but if they undergo a switch in cell fate, the proliferation clock is reset.