Mari Cruz García-Gutiérrez
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mari Cruz García-Gutiérrez.
Nano Letters | 2010
Mari Cruz García-Gutiérrez; Amelia Linares; Jaime J. Hernández; Daniel R. Rueda; Tiberio A. Ezquerra; P. Poza; Richard J. Davies
This work demonstrates the use of wetting nanoporous alumina template with polymer solution to produce arrays of isolated poly(vinylidene fluoride) (PVDF) ferroelectric gamma-type nanorods supported within a nonpolar alpha-structure film. The method is based upon a crystal phase transition which occurs due to PVDF confinement within alumina nanoporous. The system was studied using scanning X-ray microdiffraction (micro-XRD) that allows the solid-solid phase transition from the alpha-nonpolar crystal form (bulk) to the gamma polar ferroelectric form (nanorod array) to be spatially resolved, as well as providing crystallinity and orientation information. The results reveal that the interaction between polymer chains and the porous membranes walls imposes a flat-on lamella growth along the nanorrods long axis, while improving crystal orientation.
Archive | 2009
Marian Gomez; Aurora Nogales; Mari Cruz García-Gutiérrez; Tiberio A. Ezquerra
Bases of Synchrotron Radiation, Light Sources, and Features of X-Ray Scattering Beamlines.- Scattering of Soft Condensed Matter: From Fundaments to Application.- A Basic Introduction to Grazing Incidence Small-Angle X-Ray Scattering.- Fundaments of Soft Condensed Matter Scattering and Diffraction with Microfocus Techniques.- The Use of Scattering and Spectroscopic Synchrotron Radiation Methods in Materials Science.- Synchrotron Small-Angle X-Ray Scattering Studies of Colloidal Suspensions.- Applications of Synchrotron X-Ray Diffraction to the Study of the Phase Behavior in Liquid Crystalline Polymers.- Structural Analysis of Biological and Technical Nanocomposites by X-Ray Scattering.- Application of Non-crystalline Diffraction with Microfocus to Carbon Fibres.- Simultaneous Calorimetric, Dielectric, and SAXS/WAXS Experiments During Polymer Crystallization.- Discovering New Features of Protein Complexes Structures by Small-Angle X-Ray Scattering.- Protein Shape and Assembly Studied with X-Ray Solution Scattering: Fundaments and Practice.- Diagnosis Applications of Non-Crystalline Diffraction of Collagen Fibres: Breast Cancer and Skin Diseases.- X-Ray Diffraction from Live Muscle Fibres.
Langmuir | 2012
Ignacio Martín-Fabiani; Esther Rebollar; Susana Pérez; Daniel R. Rueda; Mari Cruz García-Gutiérrez; Anna Szymczyk; Z. Roslaniec; Marta Castillejo; Tiberio A. Ezquerra
Here we present a precise morphological description of laser-induced periodic surface structures (LIPSS) nanofabricated on spin-coated poly(trimethylene terephthalate) (PTT) films by irradiation with 266 nm, 6 ns laser pulses and by using a broad range of fluences and number of pulses. By accomplishing real and reciprocal space measurements by means of atomic force microscopy and grazing incidence wide- and small-angle X-ray scattering respectively on LIPSS samples, the range of optimum structural order has been established. For a given fluence, an increase in the number of pulses tends to improve LIPSS in PTT. However, as the pulse doses increase above a certain limit, a distortion of the structures is observed and a droplet-like morphology appears. It is proposed that this effect could be related to a plausible decrease of the molecular weight of PTT due to laser-induced chain photo-oxidation by irradiation with a high number of pulses. A concurrent decrease in viscosity enables destabilization of LIPSS by the formation of droplets in a process similar to surface-limited dewetting.
Langmuir | 2010
Jaime J. Hernández; Daniel R. Rueda; Mari Cruz García-Gutiérrez; Aurora Nogales; Tiberio A. Ezquerra; Michelina Soccio; Nadia Lotti; Andrea Munari
Thin films, with thicknesses from 10 to 400 nm of linear aliphatic polyesters (X, Y), based on propylenediol (X = 3) and on dicarboxylic acid of different chain length (Y = 2, 3, and 4 CH(2) units) were prepared by spin coating of CHCl(3) polymer solutions with different polymer concentrations. Morphology and structure of the spin coated thin films were investigated by atomic force microscopy (AFM) and by grazing incidence X-ray scattering techniques at small, (GISAXS) and wide angles (GIWAXS). AFM revealed a strong dewetting for all three polymers for coatings thinner than 100 nm. The polymer films are clearly semicrystalline for thicknesses higher than 50 nm. GIWAXS of the thicker films revealed their oriented crystalline nature. An edge-on-lamellae morphology is clearly shown by the AFM-phase images even for relatively thin films. SAXS with the beam parallel to the sample plane also support the presence of lamellae perpendicular to the substrate. The use of a mu-beam helped to interpret the GIWAXS patterns and allowed to obtain oriented WAXS patterns from melt solidified filaments. Thus, a crystal chain packing is proposed for the three polymers and consequently the indexing of the observed reflections. Accordingly, the polymer chains lie parallel to the substrate being the bc plane of the monoclinic crystal unit cell parallel to the substrate.
ACS Applied Materials & Interfaces | 2013
Ignacio Martín-Fabiani; Mari Cruz García-Gutiérrez; Daniel R. Rueda; Amelia Linares; Jaime J. Hernández; Tiberio A. Ezquerra; Michael Reynolds
We report the preparation of semicrystalline polymer nanorods of PTT and of its nanocomposites with SWCNTs by infiltration of the molten polymer into disordered anodic alumina membranes. An accurate study of the crystalline orientation of these systems has been accomplished by means of X-ray microdiffraction. While polymer residual film exhibits isotropic character, edge-on lamellae are formed upon approaching the polymer/membrane interface. This effect might be due to the elongational flow that takes place in the molten state as polymer chains infiltrate the AAO membrane. At the interface, edge-on and flat-on crystalline lamellae coexist as a consequence of the strong interaction between the polymer and the AAO surface. Inside the nanopores, the confined environment induces a kinetic selection of polymer crystals which only allows the growth of crystalline lamellae with its a-axis parallel to that of the pore. In the case of PTT/SWCNT nanocomposites, this effect, in conjunction with the strong interaction between polymer and AAO surface, seems to prevail over the templating effect of the carbon nanotubes and a similar orientation to that of the neat PTT case is observed.
ChemPhysChem | 2010
Lola González-García; Angel Barranco; Adela Muñoz Páez; Agustín R. González-Elipe; Mari Cruz García-Gutiérrez; Jaime J. Hernández; Daniel R. Rueda; Tiberio A. Ezquerra; D. Babonneau
For the first time, grazing incidence small-angle X-ray scattering (GISAXS) analysis is used to characterize the morphology of TiO(2) thin films grown by glancing angle physical vapor deposition (GLAD). According to cross-section scanning electron microscopy (SEM) images, the films consist of near isotilted TiO(2) columns of different length and width depending on film thickness. The obtained GISAXS patterns show a characteristic asymmetry with respect to the incidence plane, which is associated with the tilted geometry of the TiO(2) columns. The patterns also show the existence of two populations of columns in these GLAD-TiO(2) films. The population of the thinnest columns appears related to the first grown layer and is common for all the films investigated, while the second population of columns grows with the thickness of the films and has been related to wider columns formed by shadowing at the expense of the initially formed columns.
ACS Applied Materials & Interfaces | 2015
Daniel E. Martínez-Tong; A. Rodríguez-Rodríguez; Aurora Nogales; Mari Cruz García-Gutiérrez; Francesc Pérez-Murano; J. Llobet; Tiberio A. Ezquerra; Esther Rebollar
Polymer ferroelectric laser-induced periodic surface structures (LIPSS) have been prepared on ferroelectric thin films of a poly(vinylidene fluoride-trifluoroethylene) copolymer. Although this copolymer does not absorb light at the laser wavelength, LIPSS on the copolymer can be obtained by forming a bilayer with other light-absorbing polymers. The ferroelectric nature of the structured bilayer was proven by piezoresponse force microscopy measurements. Ferroelectric hysteresis was found on both the bilayer and the laser-structured bilayer. We show that it is possible to write ferroelectric information at the nanoscale. The laser-structured ferroelectric bilayer showed an increase in the information storage density of an order of magnitude, in comparison to the original bilayer.
ACS Applied Materials & Interfaces | 2015
Ignacio Martín-Fabiani; Esther Rebollar; Mari Cruz García-Gutiérrez; Daniel R. Rueda; Marta Castillejo; Tiberio A. Ezquerra
In this work we present an accurate mapping of the structural order of laser-induced periodic surface structures (LIPSS) in spin-coated thin polymer films, via a microfocus beam grazing incidence small-angle X-ray scattering (μGISAXS) scan, GISAXS modeling, and atomic force microscopy imaging all along the scanned area. This combined study has allowed the evaluation of the effects on LIPSS formation due to nonhomogeneous spatial distribution of the laser pulse energy, mapping with micrometric resolution the evolution of the period and degree of structural order of LIPSS across the laser beam diameter in a direction perpendicular to the polarization vector. The experiments presented go one step further toward controlling nanostructure formation in LIPSS through a deep understanding of the parameters that influence this process.
European Physical Journal E | 2013
Alejandro Sanz; Tiberio A. Ezquerra; Mari Cruz García-Gutiérrez; Inés Puente-Orench; Javier Campo; Aurora Nogales
Abstract.One of the simplest ways to confine polymeric materials is by self-assembling during the crystallization process. The remaining amorphous phase is then constrained by the lamellar crystals. In this manuscript, we aim to shed additional light in the understanding of the amorphous chains dynamics of semicrystalline polymers above the Tg by using incoherent quasielastic neutron scattering QENS in a nanoscopic time scale (10-9-10-10s) on poly(ethylene terephthalate). The observed dynamics is satisfactorily described by a theoretical model that considers that the proton mobility follows a random jump-diffusion in a restricted environment. We demonstrate that the combination of macroscopic with nanoscopic dynamic tools allows a complete description of the confined dynamics on a paradigmatic semicrystalline polymer like poly(ethylene terephthalate).Graphical abstract
Archive | 2009
Mari Cruz García-Gutiérrez; Daniel R. Rueda
A brief introduction to the laboratory X-ray tubes is followed by an overview of the appearing and development of synchrotron light sources. A general background about the generation process of synchrotron radiation which is result of the relativistic electron–magnetic field interaction is presented. The main components of a synchrotron are described. It is pointed out the lowering in electron beam emittance achieved for the consecutive generations of synchrotron radiation sources. The properties and spectrum of synchrotron light produced by bending magnets are succinctly described as well as their improvement by the use of insertion devices (wigglers and undulators). Particular reference to non-crystalline diffraction systems, main research techniques, list of the X-ray scattering beamlines available at the running synchrotrons as well as the main requirements for such beamlines are given. The first hard- and soft X-ray synchrotron radiation facilities are addressed pointing out the actual tendency to build third-generation synchrotrons of ≈ 3 GeV and storage ring sizes around 300 m. Finally, the actual running tests of free electron laser sources are also mentioned.