Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mari Gingery is active.

Publication


Featured researches published by Mari Gingery.


Proceedings of the National Academy of Sciences of the United States of America | 2003

The primary mechanism of attenuation of bacillus Calmette–Guérin is a loss of secreted lytic function required for invasion of lung interstitial tissue

Tsungda Hsu; Suzanne M. Hingley-Wilson; Bing Chen; Mei Chen; Annie Z. Dai; Paul M. Morin; Carolyn B. Marks; Jeevan Padiyar; Celia W. Goulding; Mari Gingery; David Eisenberg; Robert G. Russell; Steven C. Derrick; Frank M. Collins; Sheldon L. Morris; C. Harold King; William R. Jacobs

Tuberculosis remains a leading cause of death worldwide, despite the availability of effective chemotherapy and a vaccine. Bacillus Calmette–Guérin (BCG), the tuberculosis vaccine, is an attenuated mutant of Mycobacterium bovis that was isolated after serial subcultures, yet the functional basis for this attenuation has never been elucidated. A single region (RD1), which is absent in all BCG substrains, was deleted from virulent M. bovis and Mycobacterium tuberculosis strains, and the resulting ΔRD1 mutants were significantly attenuated for virulence in both immunocompromised and immunocompetent mice. The M. tuberculosis ΔRD1 mutants were also shown to protect mice against aerosol challenge, in a similar manner to BCG. Interestingly, the ΔRD1 mutants failed to cause cytolysis of pneumocytes, a phenotype that had been previously used to distinguish virulent M. tuberculosis from BCG. A specific transposon mutation, which disrupts the Rv3874 Rv3875 (cfp-10 esat-6) operon of RD1, also caused loss of the cytolytic phenotype in both pneumocytes and macrophages. This mutation resulted in the attenuation of virulence in mice, as the result of reduced tissue invasiveness. Moreover, specific deletion of each transcriptional unit of RD1 revealed that three independent transcriptional units are required for virulence, two of which are involved in the secretion of ESAT-6 (6-kDa early secretory antigenic target). We conclude that the primary attenuating mechanism of bacillus Calmette–Guérin is the loss of cytolytic activity mediated by secreted ESAT-6, which results in reduced tissue invasiveness.


Nature | 2005

Amyloid-like fibrils of ribonuclease A with three-dimensional domain-swapped and native-like structure

Shilpa Sambashivan; Yanshun Liu; Michael R. Sawaya; Mari Gingery; David Eisenberg

Amyloid or amyloid-like fibrils are elongated, insoluble protein aggregates, formed in vivo in association with neurodegenerative diseases or in vitro from soluble native proteins, respectively. The underlying structure of the fibrillar or ‘cross-β’ state has presented long-standing, fundamental puzzles of protein structure. These include whether fibril-forming proteins have two structurally distinct stable states, native and fibrillar, and whether all or only part of the native protein refolds as it converts to the fibrillar state. Here we show that a designed amyloid-like fibril of the well-characterized enzyme RNase A contains native-like molecules capable of enzymatic activity. In addition, these functional molecular units are formed from a core RNase A domain and a swapped complementary domain. These findings are consistent with the zipper-spine model in which a cross-β spine is decorated with three-dimensional domain-swapped functional units, retaining native-like structure.


The EMBO Journal | 2001

Polymerization of the SAM domain of TEL in leukemogenesis and transcriptional repression

Chongwoo A. Kim; Martin Phillips; Woojae Kim; Mari Gingery; Hoang H. Tran; Michael A. Robinson; Salem Faham; James U. Bowie

TEL is a transcriptional repressor that is a frequent target of chromosomal translocations in a large number of hematalogical malignancies. These rearrangements fuse a potent oligomerization module, the SAM domain of TEL, to a variety of tyrosine kinases or transcriptional regulatory proteins. The self‐associating property of TEL–SAM is essential for cell transformation in many, if not all of these diseases. Here we show that the TEL–SAM domain forms a helical, head‐to‐tail polymeric structure held together by strong intermolecular contacts, providing the first clear demonstration that SAM domains can polymerize. Our results also suggest a mechanism by which SAM domains could mediate the spreading of transcriptional repression complexes along the chromosome.


Nature Structural & Molecular Biology | 2002

THE SAM DOMAIN OF POLYHOMEOTIC FORMS A HELICAL POLYMER

Chongwoo A. Kim; Mari Gingery; Rosemarie M. Pilpa; James U. Bowie

The polycomb group (PcG) proteins are important in the maintenance of stable repression patterns during development. Several PcG members contain a protein–protein interaction module called a SAM domain (also known as SPM, PNT and HLH). Here we report the high-resolution structure of the SAM domain of polyhomeotic (Ph). Ph-SAM forms a helical polymer structure, providing a likely mechanism for the extension of PcG complexes. The structure of the polymer resembles that formed by the SAM domain of another transcriptional repressor, TEL. The formation of these polymer structures by SAM domains in two divergent repressors suggests a conserved mode of repression involving a higher order chromatin structure.


Cell | 2004

Derepression by Depolymerization: Structural Insights into the Regulation of Yan by Mae

Feng Qiao; Haiyun Song; Chongwoo A. Kim; Michael R. Sawaya; Jacob B Hunter; Mari Gingery; Ilaria Rebay; Albert J. Courey; James U. Bowie

Yan, an ETS family transcriptional repressor, is regulated by receptor tyrosine kinase signaling via the Ras/MAPK pathway. Phosphorylation and downregulation of Yan is facilitated by a protein called Mae. Yan and Mae interact through their SAM domains. We find that repression by Yan requires the formation of a higher order structure mediated by Yan-SAM polymerization. Moreover, a crystal structure of the Yan-SAM/Mae-SAM complex shows that Mae-SAM specifically recognizes a surface on Yan-SAM that is also required for Yan-SAM polymerization. Mae-SAM binds to Yan-SAM with approximately 1000-fold higher affinity than Yan-SAM binds to itself and can effectively depolymerize Yan-SAM. Mutations on Mae that specifically disrupt its SAM domain-dependent interactions with Yan disable the derepression function of Mae in vivo. Depolymerization of Yan by Mae represents a novel mechanism of transcriptional control that sensitizes Yan for regulation by receptor tyrosine kinases.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Protein crystal structure obtained at 2.9 Å resolution from injecting bacterial cells into an X-ray free-electron laser beam

Michael R. Sawaya; Duilio Cascio; Mari Gingery; José A. Rodriguez; Lukasz Goldschmidt; Jacques-Philippe Colletier; Marc Messerschmidt; Sébastien Boutet; Jason E. Koglin; Garth J. Williams; Aaron S. Brewster; Karol Nass; Johan Hattne; Sabine Botha; R. Bruce Doak; Robert L. Shoeman; Daniel P. DePonte; Brian A. Federici; Nicholas K. Sauter; Ilme Schlichting; David Eisenberg

Significance In vivo microcrystals have been observed in prokaryotic and eukaryotic cells. With rare exception, however, the ∼100,000 biological structures determined by X-ray crystallography to date have required the macromolecule under study to be extracted from the cells that produced it and crystallized in vitro. In vivo crystals present a challenge for structure determination and pose the question of the extent to which in vivo macromolecular structures are similar to those of extracted and recrystallized macromolecules. Here we show that serial femtosecond crystallography enabled by a free-electron laser yields the structure of in vivo crystals, as they exist in a living cell, and in this case the in vivo structure is essentially identical to the structure of extracted and recrystallized protein. It has long been known that toxins produced by Bacillus thuringiensis (Bt) are stored in the bacterial cells in crystalline form. Here we describe the structure determination of the Cry3A toxin found naturally crystallized within Bt cells. When whole Bt cells were streamed into an X-ray free-electron laser beam we found that scattering from other cell components did not obscure diffraction from the crystals. The resolution limits of the best diffraction images collected from cells were the same as from isolated crystals. The integrity of the cells at the moment of diffraction is unclear; however, given the short time (∼5 µs) between exiting the injector to intersecting with the X-ray beam, our result is a 2.9-Å-resolution structure of a crystalline protein as it exists in a living cell. The study suggests that authentic in vivo diffraction studies can produce atomic-level structural information.


Journal of Bacteriology | 2004

Genomic and Genetic Analysis of Bordetella Bacteriophages Encoding Reverse Transcriptase-Mediated Tropism-Switching Cassettes

Minghsun Liu; Mari Gingery; Sergei Doulatov; Yichin Liu; Asher Hodes; Stephen Baker; Paul Davis; Mark Simmonds; Carol Churcher; Karen Mungall; Michael A. Quail; Andrew Preston; Eric T. Harvill; Duncan J. Maskell; Frederick A. Eiserling; Julian Parkhill; Jeff F. Miller

Liu et al. recently described a group of related temperate bacteriophages that infect Bordetella subspecies and undergo a unique template-dependent, reverse transcriptase-mediated tropism switching phenomenon (Liu et al., Science 295: 2091-2094, 2002). Tropism switching results from the introduction of single nucleotide substitutions at defined locations in the VR1 (variable region 1) segment of the mtd (major tropism determinant) gene, which determines specificity for receptors on host bacteria. In this report, we describe the complete nucleotide sequences of the 42.5- to 42.7-kb double-stranded DNA genomes of three related phage isolates and characterize two additional regions of variability. Forty-nine coding sequences were identified. Of these coding sequences, bbp36 contained VR2 (variable region 2), which is highly dynamic and consists of a variable number of identical 19-bp repeats separated by one of three 5-bp spacers, and bpm encodes a DNA adenine methylase with unusual site specificity and a homopolymer tract that functions as a hotspot for frameshift mutations. Morphological and sequence analysis suggests that these Bordetella phage are genetic hybrids of P22 and T7 family genomes, lending further support to the idea that regions encoding protein domains, single genes, or blocks of genes are readily exchanged between bacterial and phage genomes. Bordetella bacteriophages are capable of transducing genetic markers in vitro, and by using animal models, we demonstrated that lysogenic conversion can take place in the mouse respiratory tract during infection.


Structure | 2008

Regulation of Enzyme Localization by Polymerization: Polymer Formation by the SAM Domain of Diacylglycerol Kinase δ1

Bryan T. Harada; Mary Jane Knight; Shin-ichi Imai; Feng Qiao; Ranjini Ramachander; Michael R. Sawaya; Mari Gingery; Fumio Sakane; James U. Bowie

The diacylglycerol kinase (DGK) enzymes function as regulators of intracellular signaling by altering the levels of the second messengers, diacylglycerol and phosphatidic acid. The DGK delta and eta isozymes possess a common protein-protein interaction module known as a sterile alpha-motif (SAM) domain. In DGK delta, SAM domain self-association inhibits the translocation of DGK delta to the plasma membrane. Here we show that DGK delta SAM forms a polymer and map the polymeric interface by a genetic selection for soluble mutants. A crystal structure reveals that DGKSAM forms helical polymers through a head-to-tail interaction similar to other SAM domain polymers. Disrupting polymerization by polymer interface mutations constitutively localizes DGK delta to the plasma membrane. Thus, polymerization of DGK delta regulates the activity of the enzyme by sequestering DGK delta in an inactive cellular location. Regulation by dynamic polymerization is an emerging theme in signal transduction.


Protein Science | 2011

A human sterile alpha motif domain polymerizome

Mary Jane Knight; Catherine Leettola; Mari Gingery; Hao Li; James U. Bowie

The sterile alpha motif (SAM) domain is one of the most common protein modules found in eukaryotic genomes. Many SAM domains have been shown to form helical polymer structures suggesting that SAM modules can be used to create large protein complexes in the cell. Because many polymeric SAM domains form heterogenous and insoluble aggregates that are experimentally intractable when isolated, it is likely that many polymeric SAM domains have gone uncharacterized. We, therefore, developed a method to maintain polymeric SAM domains in a soluble form that allowed rapid screening for potential SAM polymers. SAM domains were expressed as fusions to a super‐negatively charged green fluorescent protein (negGFP). The negGFP imparts three useful properties to the SAM domains: (1) the charge helps to maintain solubility; (2) the charge leads to reliable migration toward the cathode on native gels; and (3) the fluorescence emission allows visualization in crude extracts. Using the negGFP‐SAM fusions, we screened a large library of human SAM domains for polymerization using a native gel screen. A selected set of hSAM domains were then purified and examined for true polymer formation by electron microscopy. In this manner, we identified a set of new potential SAM polymers: ANKS3, Atherin, BicaudalC1, Caskin1, Caskin2, Kazrin, L3MBTL3, L3MBTL4, LBP, LiprinB1, LiprinB2, SAMD8, SAMD9, and STIM2. While further characterization will be necessary to verify that the SAM domains identified here truly form polymers, our results provide a much stronger working hypothesis for a large number of proteins that was possible from sequence analysis alone.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Three-dimensional structure of tropism-switching Bordetella bacteriophage

Wei Dai; Asher Hodes; Wong H. Hui; Mari Gingery; Jeff F. Miller; Z. Hong Zhou

Bacteriophage BPP-1, which infects Bordetella species, can switch its specificity by mutations to the ligand-binding surface of its major tropism-determinant protein, Mtd. This targeted mutagenesis results from the activity of a phage-encoded diversity-generating retroelement. Purified Mtd binds its receptor with low affinity, yet BPP-1 binding and infection of Bordettella cells are efficient because of high-avidity binding between phage-associated Mtd and its receptor. Here, using an integrative approach of three-dimensional (3D) structural analyses of the entire phage by cryo-electron tomography and single-prticle cryo-electron microscopy, we provide direct localization of Mtd in the phage and the structural basis of the high-avidity binding of the BPP-1 phage. Our structure shows that each BPP-1 particle has a T = 7 icosahedral head and an unusual tail apparatus consisting of a short central tail “hub,” six short tail spikes, and six extended tail fibers. Subtomographic averaging of the tail fiber maps revealed a two-lobed globular structure at the distal end of each long tail fiber. Tomographic reconstructions of immuno-gold-labeled BPP-1 directly localized Mtd to these globular structures. Finally, our icosahedral reconstruction of the BPP-1 head at 7Å resolution reveals an HK97-like major capsid protein stabilized by a smaller cementing protein. Our structure represents a unique bacteriophage reconstruction with its tail fibers and ligand-binding domains shown in relation to its tail apparatus. The localization of Mtd at the distal ends of the six tail fibers explains the high avidity binding of Mtd molecules to cell surfaces for initiation of infection.

Collaboration


Dive into the Mari Gingery's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James U. Bowie

University of California

View shared research outputs
Top Co-Authors

Avatar

Jeff F. Miller

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Minghsun Liu

University of California

View shared research outputs
Top Co-Authors

Avatar

Asher Hodes

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Duilio Cascio

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge