Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David Eisenberg is active.

Publication


Featured researches published by David Eisenberg.


Nucleic Acids Research | 2001

The Database of Interacting Proteins: 2004 update

Lukasz Salwinski; Christopher S. Miller; Adam J. Smith; Frank K. Pettit; James U. Bowie; David Eisenberg

The Database of Interacting Proteins (http://dip.doe-mbi.ucla.edu) aims to integrate the diverse body of experimental evidence on protein-protein interactions into a single, easily accessible online database. Because the reliability of experimental evidence varies widely, methods of quality assessment have been developed and utilized to identify the most reliable subset of the interactions. This CORE set can be used as a reference when evaluating the reliability of high-throughput protein-protein interaction data sets, for development of prediction methods, as well as in the studies of the properties of protein interaction networks.


Journal of Molecular Biology | 1984

Analysis of membrane and surface protein sequences with the hydrophobic moment plot

David Eisenberg; Erich M. Schwarz; M. Komaromy; Randolph Wall

An algorithm has been developed which identifies alpha-helices involved in the interactions of membrane proteins with lipid bilayers and which distinguishes them from helices in soluble proteins. The membrane-associated helices are then classified with the aid of the hydrophobic moment plot, on which the hydrophobic moment of each helix is plotted as a function of its hydrophobicity. The magnitude of hydrophobic moment measures the amphiphilicity of the helix (and hence its tendency to seek a surface between hydrophobic and hydrophilic phases), and the hydrophobicity measures its affinity for the membrane interior. Segments of membrane proteins in alpha-helices tend to fall in one of three regions of a hydrophobic moment plot: (1) monomeric transmembrane anchors (class I HLA transmembrane sequences) lie in the region of highest hydrophobicity and smallest hydrophobic moment; (2) helices presumed to be paired (such as the transmembrane M segments of surface immunoglobulins) and helices which are bundled together in membranes (such as bacteriorhodopsin) fall in the adjacent region with higher hydrophobic moment and smaller hydrophobicity; and (3) helices from surface-seeking proteins (such as melittin) fall in the region with still higher hydrophobic moment. alpha-Helices from globular proteins mainly fall in a region of lower mean hydrophobicity and hydrophobic moment. Application of these methods to the sequence of diphtheria toxin suggests four transmembrane helices and a surface-seeking helix in fragment B, the moiety known to have transmembrane function.


Nature | 2005

Structure of the cross-|[beta]| spine of amyloid-like fibrils

Rebecca Nelson; Michael R. Sawaya; Melinda Balbirnie; Anders Madsen; Christian Riekel; Robert Grothe; David Eisenberg

Numerous soluble proteins convert to insoluble amyloid-like fibrils that have common properties. Amyloid fibrils are associated with fatal diseases such as Alzheimers, and amyloid-like fibrils can be formed in vitro. For the yeast protein Sup35, conversion to amyloid-like fibrils is associated with a transmissible infection akin to that caused by mammalian prions. A seven-residue peptide segment from Sup35 forms amyloid-like fibrils and closely related microcrystals, from which we have determined the atomic structure of the cross-β spine. It is a double β-sheet, with each sheet formed from parallel segments stacked in register. Side chains protruding from the two sheets form a dry, tightly self-complementing steric zipper, bonding the sheets. Within each sheet, every segment is bound to its two neighbouring segments through stacks of both backbone and side-chain hydrogen bonds. The structure illuminates the stability of amyloid fibrils, their self-seeding characteristic and their tendency to form polymorphic structures.


Nature | 2007

Atomic structures of amyloid cross-β spines reveal varied steric zippers

Michael R. Sawaya; Shilpa Sambashivan; Rebecca Nelson; Magdalena I. Ivanova; Stuart A. Sievers; Marcin I. Apostol; Michael J. Thompson; Melinda Balbirnie; Jed J. W. Wiltzius; Heather T. McFarlane; Anders Ø. Madsen; Christian Riekel; David Eisenberg

Amyloid fibrils formed from different proteins, each associated with a particular disease, contain a common cross-β spine. The atomic architecture of a spine, from the fibril-forming segment GNNQQNY of the yeast prion protein Sup35, was recently revealed by X-ray microcrystallography. It is a pair of β-sheets, with the facing side chains of the two sheets interdigitated in a dry ‘steric zipper’. Here we report some 30 other segments from fibril-forming proteins that form amyloid-like fibrils, microcrystals, or usually both. These include segments from the Alzheimer’s amyloid-β and tau proteins, the PrP prion protein, insulin, islet amyloid polypeptide (IAPP), lysozyme, myoglobin, α-synuclein and β2-microglobulin, suggesting that common structural features are shared by amyloid diseases at the molecular level. Structures of 13 of these microcrystals all reveal steric zippers, but with variations that expand the range of atomic architectures for amyloid-like fibrils and offer an atomic-level hypothesis for the basis of prion strains.


Methods in Enzymology | 1997

VERIFY3D : ASSESSMENT OF PROTEIN MODELS WITH THREE-DIMENSIONAL PROFILES

David Eisenberg; Roland Lüthy; James U. Bowie

Publisher Summary The three-dimensional (3D) profile of a protein structure is a table computed from the atomic coordinates of the structure that can be used to score the compatibility of the 3D structure model with any amino acid sequence. Three-dimensional profiles computed from correct protein structures match their own sequences with high scores. An incorrectly modeled segment in an otherwise correct structure can be identified by examining the profile score in a moving-window scan. Thus, the correctness of a protein model can be verified by its 3D profile, regardless of whether the model has been derived by X-ray, nuclear magnetic resonance (NMR), or computational procedures. For this reason, 3D profiles are useful in the evaluation of undetermined protein models, based on low-resolution electron-density maps, on NMR spectra with inadequate distance constraints, or on computational procedures. An advantage of using 3D profiles for testing models is that profiles have not themselves been used in the determination of the structure. Traditional R -factor tests in X-ray analysis depend on the comparison of observed properties—that is, the X-ray structure factor magnitudes with the same property calculated from the final protein model.


The New England Journal of Medicine | 1999

Aggressive lipid-lowering therapy compared with angioplasty in stable coronary artery disease

B. Pitt; D. Waters; William Virgil Brown; A. J. Van Boven; L. Schwartz; L. M. Title; David Eisenberg; L. Shurzinske; L. S. Mccormick

BACKGROUND Percutaneous coronary revascularization is widely used in improving symptoms and exercise performance in patients with ischemic heart disease and stable angina pectoris. In this study, we compared percutaneous coronary revascularization with lipid-lowering treatment for reducing the incidence of ischemic events. METHODS We studied 341 patients with stable coronary artery disease, relatively normal left ventricular function, asymptomatic or mild-to-moderate angina, and a serum level of low-density lipoprotein (LDL) cholesterol of at least 115 mg per deciliter (3.0 mmol per liter) who were referred for percutaneous revascularization. We randomly assigned the patients either to receive medical treatment with atorvastatin, at 80 mg per day (164 patients), or to undergo the recommended percutaneous revascularization procedure (angioplasty) followed by usual care, which could include lipid-lowering treatment (177 patients). The follow-up period was 18 months. RESULTS Twenty-two (13 percent) of the patients who received aggressive lipid-lowering treatment with atorvastatin (resulting in a 46 percent reduction in the mean serum LDL cholesterol level, to 77 mg per deciliter [2.0 mmol per liter]) had ischemic events, as compared with 37 (21 percent) of the patients who underwent angioplasty (who had an 18 percent reduction in the mean serum LDL cholesterol level, to 119 mg per deciliter [3.0 mmol per liter]). The incidence of ischemic events was thus 36 percent lower in the atorvastatin group over an 18-month period (P=0.048, which was not statistically significant after adjustment for interim analyses). This reduction in events was due to a smaller number of angioplasty procedures, coronary-artery bypass operations, and hospitalizations for worsening angina. As compared with the patients who were treated with angioplasty and usual care, the patients who received atorvastatin had a significantly longer time to the first ischemic event (P=0.03). CONCLUSIONS In low-risk patients with stable coronary artery disease, aggressive lipid-lowering therapy is at least as effective as angioplasty and usual care in reducing the incidence of ischemic events.


Nature | 1999

A combined algorithm for genome-wide prediction of protein function

Edward M. Marcotte; Matteo Pellegrini; Michael J. Thompson; Todd O. Yeates; David Eisenberg

The availability of over 20 fully sequenced genomes has driven the development of new methods to find protein function and interactions. Here we group proteins by correlated evolution, correlated messenger RNA expression patterns and patterns of domain fusion to determine functional relationships among the 6,217 proteins of the yeast Saccharomyces cerevisiae. Using these methods, we discover over 93,000 pairwise links between functionally related yeast proteins. Links between characterized and uncharacterized proteins allow a general function to be assigned to more than half of the 2,557 previously uncharacterized yeast proteins. Examples of functional links are given for a protein family of previously unknown function, a protein whose human homologues are implicated in colon cancer and the yeast prion Sup35.


Cell | 2012

The Amyloid State of Proteins in Human Diseases

David Eisenberg; Mathias Jucker

Amyloid fibers and oligomers are associated with a great variety of human diseases including Alzheimers disease and the prion conditions. Here we attempt to connect recent discoveries on the molecular properties of proteins in the amyloid state with observations about pathological tissues and disease states. We summarize studies of structure and nucleation of amyloid and relate these to observations on amyloid polymorphism, prion strains, coaggregation of pathogenic proteins in tissues, and mechanisms of toxicity and transmissibility. Molecular studies have also led to numerous strategies for biological and chemical interventions against amyloid diseases.


PLOS Biology | 2007

The Sorcerer II Global Ocean Sampling Expedition: Expanding the Universe of Protein Families

Shibu Yooseph; Granger Sutton; Douglas B. Rusch; Aaron L. Halpern; Shannon J. Williamson; Karin A. Remington; Jonathan A. Eisen; Karla B. Heidelberg; Gerard Manning; Weizhong Li; Lukasz Jaroszewski; Piotr Cieplak; Christopher S. Miller; Huiying Li; Susan T. Mashiyama; Marcin P Joachimiak; Christopher van Belle; John-Marc Chandonia; David A W Soergel; Yufeng Zhai; Kannan Natarajan; Shaun W. Lee; Benjamin J. Raphael; Vineet Bafna; Robert Friedman; Steven E. Brenner; Adam Godzik; David Eisenberg; Jack E. Dixon; Susan S. Taylor

Metagenomics projects based on shotgun sequencing of populations of micro-organisms yield insight into protein families. We used sequence similarity clustering to explore proteins with a comprehensive dataset consisting of sequences from available databases together with 6.12 million proteins predicted from an assembly of 7.7 million Global Ocean Sampling (GOS) sequences. The GOS dataset covers nearly all known prokaryotic protein families. A total of 3,995 medium- and large-sized clusters consisting of only GOS sequences are identified, out of which 1,700 have no detectable homology to known families. The GOS-only clusters contain a higher than expected proportion of sequences of viral origin, thus reflecting a poor sampling of viral diversity until now. Protein domain distributions in the GOS dataset and current protein databases show distinct biases. Several protein domains that were previously categorized as kingdom specific are shown to have GOS examples in other kingdoms. About 6,000 sequences (ORFans) from the literature that heretofore lacked similarity to known proteins have matches in the GOS data. The GOS dataset is also used to improve remote homology detection. Overall, besides nearly doubling the number of current proteins, the predicted GOS proteins also add a great deal of diversity to known protein families and shed light on their evolution. These observations are illustrated using several protein families, including phosphatases, proteases, ultraviolet-irradiation DNA damage repair enzymes, glutamine synthetase, and RuBisCO. The diversity added by GOS data has implications for choosing targets for experimental structure characterization as part of structural genomics efforts. Our analysis indicates that new families are being discovered at a rate that is linear or almost linear with the addition of new sequences, implying that we are still far from discovering all protein families in nature.


Cell | 2012

Cell-free Formation of RNA Granules: Low Complexity Sequence Domains Form Dynamic Fibers within Hydrogels

Masato Kato; Tina W. Han; Shanhai Xie; Kevin Y. Shi; Xinlin Du; Leeju C. Wu; Hamid Mirzaei; Elizabeth J. Goldsmith; Jamie Longgood; Jimin Pei; Nick V. Grishin; Douglas E. Frantz; Jay W. Schneider; She Chen; Lin Li; Michael R. Sawaya; David Eisenberg; Robert Tycko; Steven L. McKnight

Eukaryotic cells contain assemblies of RNAs and proteins termed RNA granules. Many proteins within these bodies contain KH or RRM RNA-binding domains as well as low complexity (LC) sequences of unknown function. We discovered that exposure of cell or tissue lysates to a biotinylated isoxazole (b-isox) chemical precipitated hundreds of RNA-binding proteins with significant overlap to the constituents of RNA granules. The LC sequences within these proteins are both necessary and sufficient for b-isox-mediated aggregation, and these domains can undergo a concentration-dependent phase transition to a hydrogel-like state in the absence of the chemical. X-ray diffraction and EM studies revealed the hydrogels to be composed of uniformly polymerized amyloid-like fibers. Unlike pathogenic fibers, the LC sequence-based polymers described here are dynamic and accommodate heterotypic polymerization. These observations offer a framework for understanding the function of LC sequences as well as an organizing principle for cellular structures that are not membrane bound.

Collaboration


Dive into the David Eisenberg's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Duilio Cascio

University of California

View shared research outputs
Top Co-Authors

Avatar

Roger B. Davis

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Ted J. Kaptchuk

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lin Jiang

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tamir Gonen

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas C. Terwilliger

Los Alamos National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge