Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mari Masuda is active.

Publication


Featured researches published by Mari Masuda.


Molecular and Cellular Biology | 2006

Disruption of Spermatogenic Cell Adhesion and Male Infertility in Mice Lacking TSLC1/IGSF4, an Immunoglobulin Superfamily Cell Adhesion Molecule

Daisuke Yamada; Midori Yoshida; Yuko N. Williams; Takeshi Fukami; Shinji Kikuchi; Mari Masuda; Tomoko Maruyama; Tsutomu Ohta; Dai Nakae; Akihiko Maekawa; Tadaichi Kitamura; Yoshinori Murakami

ABSTRACT TSLC1/IGSF4, an immunoglobulin superfamily molecule, is predominantly expressed in the brain, lungs, and testes and plays important roles in epithelial cell adhesion, cancer invasion, and synapse formation. We generated Tslc1/Igsf4-deficient mice by disrupting exon 1 of the gene and found that Tslc1−/− mice were born with the expected Mendelian ratio but that Tslc1−/− male mice were infertile. In 11-week-old adult Tslc1−/− mice, the weight of a testis was 88% that in Tslc1+/+ mice, and the number of sperm in the semen was approximately 0.01% that in Tslc1+/+ mice. Histological analysis revealed that the round spermatids and the pachytene spermatocytes failed to attach to the Sertoli cells in the seminiferous tubules and sloughed off into the lumen with apoptosis in the Tslc1−/− mice. On the other hand, the spermatogonia and the interstitial cells, including Leydig cells, were essentially unaffected. In the Tslc1+/+ mice, TSLC1/IGSF4 expression was observed in the spermatogenic cells from the intermediate spermatogonia to the early pachytene spermatocytes and from spermatids at step 7 or later. These findings suggest that TSLC1/IGSF4 expression is indispensable for the adhesion of spermatocytes and spermatids to Sertoli cells and for their normal differentiation into mature spermatozoa.


Clinical Cancer Research | 2005

Promoter methylation of DAL-1/4.1B predicts poor prognosis in non-small cell lung cancer.

Shinji Kikuchi; Daisuke Yamada; Takeshi Fukami; Mari Masuda; Mika Sakurai-Yageta; Yuko N. Williams; Tomoko Maruyama; Hisao Asamura; Yoshihiro Matsuno; Masataka Onizuka; Yoshinori Murakami

Purpose: DAL-1/4.1B is an actin-binding protein originally identified as a molecule whose expression is down-regulated in lung adenocarcinoma. We have previously shown that a lung tumor suppressor, TSLC1, associates with DAL-1, suggesting that both proteins act in the same cascade. The purpose of this study is to understand the molecular mechanisms and clinical significance of DAL-1 inactivation in lung cancer. Experimental Design: We studied aberration of the DAL-1 in 103 primary non–small cell lung cancers (NSCLC) and 18 lung cancer cells. Expression and allelic and methylation status of DAL-1 was examined by reverse transcription-PCR, microsatellite analysis, and bisulfite sequencing or bisulfite single-strand conformational polymorphism, respectively. Results: Loss of DAL-1 expression was strongly correlated with promoter methylation in lung cancer cells, whereas DAL-1 expression was restored by a demethylating agent, 5-aza-2′-deoxycytidine. The DAL-1 promoter was methylated in 59 (57%) primary NSCLC tumors, 37% of which were associated with loss of heterozygosity around the DAL-1 on chromosomal region 18p11.3. In squamous cell carcinomas, DAL-1 methylation was observed in 9 of 10 tumors at stage I, whereas the incidence of methylation gradually increased in adenocarcinomas as they progressed [13 of 36 (36%), 4 of 12 (33%), 14 of 17 (82%), and 3 of 3 (100%) tumors at stages I, II, III, and IV, respectively; P = 0.0026]. Furthermore, in adenocarcinomas, disease-free survival and overall survival were significantly shorter in patients with tumors harboring the methylated DAL-1 (P = 0.0011 and P = 0.045, respectively). Conclusions:DAL-1 methylation is involved in the development and progression of NSCLC and provides an indicator for poor prognosis.


International Journal of Cancer | 2006

Promoter hypermethylation of the potential tumor suppressor DAL-1/4.1B gene in renal clear cell carcinoma

Daisuke Yamada; Shinji Kikuchi; Yuko N. Williams; Mika Sakurai-Yageta; Mari Masuda; Tomoko Maruyama; Kyoichi Tomita; David H. Gutmann; Tadao Kakizoe; Tadaichil Kitamura; Yae Kanai; Yoshinori Murakami

Renal clear cell carcinoma (RCCC) is a malignant tumor with poor prognosis caused by the high incidence of metastasis to distal organs. Although metastatic RCCC cells frequently show aberrant cytoskeletal organization, the underlying mechanism has not been elucidated. DAL‐1/4.1B is an actin‐binding protein implicated in the cytoskeleton‐associated processes, while its inactivation is frequently observed in lung and breast cancers and meningiomas, suggesting that 4.1B is a potential tumor suppressor. We studied a possible involvement of 4.1B in RCCCs and evaluated it as a clinical indicator. 4.1B protein was detected in the proximal convoluted tubules of human kidney, the presumed cell of origin of RCCC. On the other hand, loss or marked reduction of its expression was observed in 10 of 19 (53%) renal cell carcinoma (RCC) cells and 12 of 19 (63%) surgically resected RCCC by reverse transcription‐PCR. Bisulfite sequencing or bisulfite SSCP analyses revealed that the 4.1B promoter was methylated in 9 of 19 (47%) RCC cells and 25 of 55 (45%) surgically resected RCCC, and inversely correlated with 4.1B expression (p < 0.0001). Aberrant methylation appeared to be a relatively early event because more than 40% of the tumors with pT1a showed hypermethylation. Furthermore, 4.1B methylation correlated with a nuclear grade (p = 0.017) and a recurrence‐free survival (p = 0.0036) and provided an independent prognostic factor (p = 0.038, relative risk 10.5). These results indicate that the promoter methylation of the 4.1B is one of the most frequent epigenetic alterations in RCCC and could predict the metastatic recurrence of the surgically resected RCCC.


Molecular Cancer Therapeutics | 2010

Reduced Argininosuccinate Synthetase Is a Predictive Biomarker for the Development of Pulmonary Metastasis in Patients with Osteosarcoma

Eisuke Kobayashi; Mari Masuda; Robert Nakayama; Hitoshi Ichikawa; Reiko Satow; Miki Shitashige; Kazufumi Honda; Umio Yamaguchi; Ayako Shoji; Naobumi Tochigi; Hideo Morioka; Yoshiaki Toyama; Setsuo Hirohashi; Akira Kawai; Tesshi Yamada

Pulmonary metastasis is the most significant prognostic determinant for osteosarcoma, but methods for its prediction and treatment have not been established. Using oligonucleotide microarrays, we compared the global gene expression of biopsy samples between seven osteosarcoma patients who developed pulmonary metastasis within 4 years after neoadjuvant chemotherapy and curative resection, and 12 patients who did not relapse. We identified argininosuccinate synthetase (ASS) as a gene differentially expressed with the highest statistical significance (Welchs t test, P = 2.2 × 10−5). Immunohistochemical analysis of an independent cohort of 62 osteosarcoma cases confirmed that reduced expression of ASS protein was significantly correlated with the development of pulmonary metastasis after surgery (log-rank test, P < 0.05). Cox regression analysis revealed that ASS was the sole significant predictive factor (P = 0.039; hazard ratio, 0.319; 95% confidence interval, 0.108-0.945). ASS is one of the enzymes required for the production of a nonessential amino acid, arginine. We showed that osteosarcoma cells lacking ASS expression were auxotrophic for arginine and underwent G0-G1 arrest in arginine-free medium, suggesting that an arginine deprivation therapy could be effective in patients with osteosarcoma. Recently, phase I and II clinical trials in patients with melanoma and hepatocellular carcinoma have shown the safety and efficacy of plasma arginine depletion by stabilized arginine deiminase. Our data indicate that in patients with osteosarcoma, reduced expression of ASS is not only a novel predictive biomarker for the development of metastasis, but also a potential target for pharmacologic intervention. Mol Cancer Ther; 9(3); 535–44


Japanese Journal of Clinical Oncology | 2013

Proteomic Approaches to the Discovery of Cancer Biomarkers for Early Detection and Personalized Medicine

Kazufumi Honda; Masaya Ono; Miki Shitashige; Mari Masuda; Masahiro Kamita; Nami Miura; Tesshi Yamada

Cancer biomarkers for the early detection of malignancies and selection of therapeutic strategies have been requested in the clinical field. Accurate and informative cancer biomarkers hold significant promise for improvements in the early detection of disease and in the selection of the most effective therapeutic strategies. Recently, significant progress in the comprehensive analysis of the human genome, epigenome, transcriptome, proteome and metabolome has led to revolutionary changes in the discovery of cancer biomarkers. The Human Proteome Organization has launched a global Human Proteome Project to map the entire human protein set. The Human Proteome Project research group has focused on three working proteomic pillars-mass spectrometry-based, antibody-based and knowledge-based proteomics-and each of these technologies is advancing rapidly. In this review, we introduce the proteomic platforms that are currently being used for cancer biomarker discovery, and describe examples of novel cancer biomarkers that were identified with each proteomic technology.


Cancer Science | 2009

Quantitative proteomics using formalin-fixed paraffin-embedded tissues of oral squamous cell carcinoma

Ayako Negishi; Mari Masuda; Masaya Ono; Kazufumi Honda; Miki Shitashige; Reiko Satow; Tomohiro Sakuma; Hideya Kuwabara; Yukihiro Nakanishi; Yae Kanai; Ken Omura; Setsuo Hirohashi; Tesshi Yamada

Clinical proteomics using a large archive of formalin‐fixed paraffin‐embedded (FFPE) tissue blocks has long been a challenge. Recently, a method for extracting proteins from FFPE tissue in the form of tryptic peptides was developed. Here we report the application of a highly sensitive mass spectrometry (MS)‐based quantitative proteome method to a small amount of samples obtained by laser microdissection from FFPE tissues. Cancerous and adjacent normal epithelia were microdissected from FFPE tissue blocks of 10 squamous cell carcinomas of the tongue. Proteins were extracted in the form of tryptic peptides and analyzed by 2‐dimensional image‐converted analysis of liquid chromatography and mass spectrometry (2DICAL), a label‐free quantitative proteomics method developed in our laboratory. From a total of 25 018 peaks we selected 72 mass peaks whose expression differed significantly between cancer and normal tissues (P < 0.001, paired t‐test). The expression of transglutaminase 3 (TGM3) was significantly down‐regulated in cancer and correlated with loss of histological differentiation. Hypermethylation of TGM3 gene CpG islands was observed in 12 oral squamous cell carcinoma (OSCC) cell lines with reduced TGM3 expression. These results suggest that epigenetic silencing of TGM3 plays certain roles in the process of oral carcinogenesis. The method for quantitative proteomic analysis of FFPE tissue described here offers new opportunities to identify disease‐specific biomarkers and therapeutic targets using widely available archival samples with corresponding detailed pathological and clinical records. (Cancer Sci 2009; 100: 1605–1611)


Biochemical and Biophysical Research Communications | 2009

Tumor suppressor CADM1 is involved in epithelial cell structure

Mika Sakurai-Yageta; Mari Masuda; Yumi Tsuboi; Akihiko Ito; Yoshinori Murakami

The tumor suppressor, CADM1, is involved in cell adhesion and preferentially inactivated in invasive cancer. We have previously reported that CADM1 associates with an actin-binding protein, 4.1B/DAL-1, and a scaffold protein, membrane protein palmitoylated 3 (MPP3)/DLG3. However, underlying mechanism of tumor suppression by CADM1 is not clarified yet. Here, we demonstrate that MPP1/p55 and MPP2/DLG2, as well as MPP3, interact with both CADM1 and 4.1B, forming a tripartite complex. We then examined cell biological roles of CADM1 and its complex in epithelia using HEK293 cells. Among MPP1-3, MPP2 is recruited to the CADM1-4.1B complex in the early process of adhesion in HEK293 cells. By suppression of CADM1 expression using siRNA, HEK293 lose epithelia-like structure and show flat morphology with immature cell adhesion. 4.1B and MPP2, as well as E-cadherin and ZO-1, are mislocalized from the membrane by depletion of CADM1 in HEK293. Mislocalization of MPP2 is also observed in several cancer cells lacking CADM1 expression with the transformed morphology. These findings suggest that CADM1 is involved in the formation of epithelia-like cell structure with 4.1B and MPP2, while loss of its function could cause morphological transformation of cancer cells.


Oncogene | 2006

Cell adhesion and prostate tumor-suppressor activity of TSLL2/IGSF4C, an immunoglobulin superfamily molecule homologous to TSLC1/IGSF4

Yuko N. Williams; Mari Masuda; Mika Sakurai-Yageta; Tomoko Maruyama; Yoshinori Murakami

The TSLL2/IGSF4C encodes an immunoglobulin (Ig) superfamily molecule showing significant homology with a lung tumor suppressor, TSLC1. The TSLL2 protein of 55 kDa is mainly expressed in the kidney, bladder, and prostate in addition to the brain. Here, we report the biological significance of TSLL2 in the urinary tissues. An immunohistochemical study reveals that TSLL2 is expressed at the cell–cell attachment sites in the renal tubules, the transitional epithelia of the bladder, and the glandular epithelia of the prostate. Confocal microscopy analysis demonstrates that TSLL2 is localized in the lateral membranes in polarized Mardin-Darby canine kidney (MDCK) cells. TSLL2 forms homo-dimers and its overexpression induces aggregation of suspended MDCK cells in a Ca2+/Mg2+-independent manner, suggesting that it is involved in cell adhesion through homophilic trans-interaction. The TSLL2 gene is mapped on the chromosomal region 19q13.2, whose loss of heterozygosity has been frequently reported in prostate cancer. TSLL2 protein is lost in nine of nine primary prostate cancers and in a prostate cancer cell, PPC-1. Introduction of TSLL2 into PPC-1 strongly suppresses subcutaneous tumor formation in nude mice. These results suggest that TSLL2 is a new member of the Ig superfamily cell adhesion molecules and is a tumor-suppressor candidate in prostate cancer.


Journal of Biological Chemistry | 2010

CADM1 Interacts with Tiam1 and Promotes Invasive Phenotype of Human T-cell Leukemia Virus Type I-transformed Cells and Adult T-cell Leukemia Cells

Mari Masuda; Tomoko Maruyama; Tsutomu Ohta; Akihiko Ito; Tomayoshi Hayashi; Kunihiko Tsukasaki; Shimeru Kamihira; Shoji Yamaoka; Hiroo Hoshino; Teruhiko Yoshida; Toshiki Watanabe; Eric J. Stanbridge; Yoshinori Murakami

CADM1 encodes a multifunctional immunoglobulin-like cell adhesion molecule whose cytoplasmic domain contains a type II PSD95/Dlg/ZO-1 (PDZ)-binding motif (BM) for associating with other intracellular proteins. Although CADM1 lacks expression in T lymphocytes of healthy individuals, it is overexpressed in adult T-cell leukemia-lymphoma (ATL) cells. It has been suggested that the expression of CADM1 protein promotes infiltration of leukemic cells into various organs and tissues, which is one of the frequent clinical manifestations of ATL. Amino acid sequence alignment revealed that Tiam1 (T-lymphoma invasion and metastasis 1), a Rac-specific guanine nucleotide exchange factor, has a type II PDZ domain similar to those of membrane-associated guanylate kinase homologs (MAGUKs) that are known to bind to the PDZ-BM of CADM1. In this study, we demonstrated that the cytoplasmic domain of CADM1 directly interacted with the PDZ domain of Tiam1 and induced formation of lamellipodia through Rac activation in HTLV-I-transformed cell lines as well as ATL cell lines. Our results indicate that Tiam1 integrates signals from CADM1 to regulate the actin cytoskeleton through Rac activation, which may lead to tissue infiltration of leukemic cells in ATL patients.


Gastroenterology | 2008

Cell Adhesion Molecule 1 Is a Novel Pancreatic–Islet Cell Adhesion Molecule That Mediates Nerve–Islet Cell Interactions

Yu-ichiro Koma; Tadahide Furuno; Man Hagiyama; Kazuyuki Hamaguchi; Mamoru Nakanishi; Mari Masuda; Seiichi Hirota; Hiroshi Yokozaki; Akihiko Ito

BACKGROUND & AIMS Cell adhesion molecule 1 (CADM1), mediates nerve-mast cell attachment and communication through homophilic binding. An immunohistochemical screen showed that CADM1 is expressed in pancreatic islets. Here, we determined the cell types expressing CADM1 and examined its role in nerve-islet cell interactions. METHODS Immunohistochemistry and double-staining immunofluorescence were performed on murine and human pancreases and on islet cell tumors (ICTs). alphaTC6 cells, a murine alpha cell line, were cultured on neurite networks of superior cervical ganglia. Neurite-alphaTC6 cell attachment and communication were examined after nerves were activated specifically by scorpion venom. RESULTS CADM1 was expressed on the plasma membrane in all 4 major types of islet cells, alpha, beta, D, and pancreatic polypeptide in human beings, but primarily in alpha cells in mice. In cocultures, alphaTC6 cell to neurite attachment was inhibited dose-dependently by an anti-CADM1 function-blocking antibody. In response to scorpion venom-evoked nerve activation, 36% of the alphaTC6 cells mobilized Ca(2+), and introduction of a CADM1-targeting small interfering RNA reduced the fraction of responding cells to 7%. In 21 human ICTs, CADM1 was present in the plasma membrane of 7, and the others were negative for CADM1. Six of the CADM1-expressing tumors were functional hormonally, whereas all but 2 of the CADM1-negative tumors were nonfunctional (P = .0032). CONCLUSIONS CADM1 is a novel islet cell adhesion molecule mediating nerve-islet cell interactions. The strong correlation between CADM1 expression and hormonally functional phenotypes suggests that CADM1 is involved in hormone secretion from ICTs.

Collaboration


Dive into the Mari Masuda's collaboration.

Top Co-Authors

Avatar

Tesshi Yamada

Sapporo Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kazufumi Honda

Tokyo Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge