Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mari Nyyssönen is active.

Publication


Featured researches published by Mari Nyyssönen.


FEMS Microbiology Ecology | 2011

Characterization of bacterial diversity to a depth of 1500 m in the Outokumpu deep borehole, Fennoscandian Shield

Merja Itävaara; Mari Nyyssönen; Anu Kapanen; Aura Nousiainen; Lasse Ahonen; Ilmo T. Kukkonen

This paper demonstrates the first microbiological sampling of the Outokumpu deep borehole (2516 m deep) aiming at characterizing the bacterial community composition and diversity of sulphate-reducing bacteria (SRB) in Finnish crystalline bedrock aquifers. Sampling was performed using a 1500-m-long pressure-tight tube that provided 15 subsamples, each corresponding to a 100-m section down the borehole. Microbial density measurements, as well as community fingerprinting with 16S rRNA gene-based denaturing gradient gel electrophoresis, demonstrated that microbial communities in the borehole water varied as a function of sampling depth. In the upper part of the borehole, bacteria affiliated to the family Comamonadaceae dominated the bacterial community. Further down the borehole, bacteria affiliated to the class Firmicutes became more prominent and, according to 16S rRNA gene clone libraries, dominated the bacterial community at 1400-1500 m. In addition, the largest number of bacterial classes was observed at 1400-1500 m. The dsrB genes detected in the upper part of the borehole were more similar to the dsrB genes of cultured SRBs, such as the genus Desulfotomaculum, whereas in the deeper parts of the borehole, the dsrB genes were more closely related to the uncultured bacteria that have been detected earlier in deep earth crust aquifers.


The ISME Journal | 2014

Taxonomically and functionally diverse microbial communities in deep crystalline rocks of the Fennoscandian shield.

Mari Nyyssönen; Jenni Hultman; Lasse Ahonen; Ilmo T. Kukkonen; Lars Paulin; Pia Laine; Merja Itävaara; Petri Auvinen

Microbial life in the nutrient-limited and low-permeability continental crystalline crust is abundant but remains relatively unexplored. Using high-throughput sequencing to assess the 16S rRNA gene diversity, we found diverse bacterial and archaeal communities along a 2516-m-deep drill hole in continental crystalline crust in Outokumpu, Finland. These communities varied at different sampling depths in response to prevailing lithology and hydrogeochemistry. Further analysis by shotgun metagenomic sequencing revealed variable carbon and nutrient utilization strategies as well as specific functional and physiological adaptations uniquely associated with specific environmental conditions. Altogether, our results show that predominant geological and hydrogeochemical conditions, including the existence and connectivity of fracture systems and the low amounts of available energy, have a key role in controlling microbial ecology and evolution in the nutrient and energy-poor deep crustal biosphere.


Biodegradation | 2005

Monitoring of accelerated naphthalene-biodegradation in a bioaugmented soil slurry

Reetta Piskonen; Mari Nyyssönen; Tiina Rajamäki; Merja Itävaara

The effect of microbial inoculation on the mineralization of naphthalene in a bioslurry treatment was evaluated in soil slurry microcosms. Inoculation by Pseudomonas putida G7 carrying the naphthalene dioxygenase (nahA) gene resulted in rapid mineralization of naphthalene, whereas indigenous microorganisms in the PAH-contaminated soil required a 28 h adaptation period before significant mineralization occurred. The number of nahA-like gene copies increased in both the inoculated and non-inoculated soil as mineralization proceeded, indicating selection towards naphthalene dioxygenase producing bacteria in the microbial community. In addition, 16S rRNA analysis by denaturing gradient gel electrophoresis (DGGE) analysis showed that significant selection occurred in the microbial community as a result of biodegradation. However, the indigenous soil bacteria were not able to compete with the P. putida G7 inoculum adapted to naphthalene biodegradation, even though the soil microbial community slightly suppressed naphthalene mineralization by P. putida G7.


Geomicrobiology Journal | 2012

Methanogenic and Sulphate-Reducing Microbial Communities in Deep Groundwater of Crystalline Rock Fractures in Olkiluoto, Finland

Mari Nyyssönen; Malin Bomberg; Anu Kapanen; Aura Nousiainen; Petteri Pitkänen; Merja Itävaara

The long-term safety of final disposal of spent nuclear fuel in the deep geosphere is dependent on stability of biogeochemical conditions at the disposal site. Microbial processes, such as sulphate reduction and methanogenesis, may have profound effects on site biogeochemistry. In this study, sulphate-reducing bacteria and methane-producing archaea were investigated at depths ranging from 68 to 545 m in crystalline rock fractures at an intended spent nuclear fuel disposal site in Olkiluoto, Finland. Denaturing gradient gel electrophoresis detected diverse sulphate-reducing bacterial communities in all samples. Although the number of dsrB gene copies was below 103 copies ml−1 in all analyzed samples according to real-time quantitative PCR, their abundance was highest in samples that had the highest sulphate concentrations. Several distinct mcrA gene fragments were also recovered from most of the analyzed samples by cloning, although the number of methanogens was lower than that of sulphate-reducing bacteria when measured by mcrA-targeted quantitative PCR. The detected gene fragments were most closely related to sequences obtained from aquatic and deep subsurface environments. Results imply that sulphate reduction, methanogenesis, and anaerobic methane oxidation may all take place in the Olkiluoto deep geobiosphere.


BioMed Research International | 2015

Active Microbial Communities Inhabit Sulphate-Methane Interphase in Deep Bedrock Fracture Fluids in Olkiluoto, Finland

Malin Bomberg; Mari Nyyssönen; Petteri Pitkänen; Anne Lehtinen; Merja Itävaara

Active microbial communities of deep crystalline bedrock fracture water were investigated from seven different boreholes in Olkiluoto (Western Finland) using bacterial and archaeal 16S rRNA, dsrB, and mcrA gene transcript targeted 454 pyrosequencing. Over a depth range of 296–798 m below ground surface the microbial communities changed according to depth, salinity gradient, and sulphate and methane concentrations. The highest bacterial diversity was observed in the sulphate-methane mixing zone (SMMZ) at 250–350 m depth, whereas archaeal diversity was highest in the lowest boundaries of the SMMZ. Sulphide-oxidizing ε-proteobacteria (Sulfurimonas sp.) dominated in the SMMZ and γ-proteobacteria (Pseudomonas spp.) below the SMMZ. The active archaeal communities consisted mostly of ANME-2D and Thermoplasmatales groups, although Methermicoccaceae, Methanobacteriaceae, and Thermoplasmatales (SAGMEG, TMG) were more common at 415–559 m depth. Typical indicator microorganisms for sulphate-methane transition zones in marine sediments, such as ANME-1 archaea, α-, β- and δ-proteobacteria, JS1, Actinomycetes, Planctomycetes, Chloroflexi, and MBGB Crenarchaeota were detected at specific depths. DsrB genes were most numerous and most actively transcribed in the SMMZ while the mcrA gene concentration was highest in the deep methane rich groundwater. Our results demonstrate that active and highly diverse but sparse and stratified microbial communities inhabit the Fennoscandian deep bedrock ecosystems.


FEMS Microbiology Ecology | 2013

Dissecting the deep biosphere: retrieving authentic microbial communities from packer-isolated deep crystalline bedrock fracture zones.

Lotta Purkamo; Malin Bomberg; Mari Nyyssönen; Ilmo T. Kukkonen; Lasse Ahonen; Riikka Kietäväinen; Merja Itävaara

Deep fracture zones in Finnish crystalline bedrock have been isolated for long, the oldest fluids being tens of millions of years old. To accurately measure the native microbial diversity in fracture-zone fluids, water samples were obtained by isolating the borehole fraction spanning a deep subsurface aquifer fracture zone with inflatable packers (500 and 967 m) or by pumping fluids directly from the fracture zone. Sampling frequency was examined to establish the time required for the space between packers to be flushed and replaced by indigenous fracture fluids. Chemical parameters of the fluid were monitored continuously, and samples were taken at three points during the flushing process. Microbial communities were characterized by comparison of 16S ribosomal genes and transcripts and quantification of dsrB (dissimilatory sulfate reduction) gene. Results suggest that fracture-zones host microbial communities with fewer cells and lower diversity than those in the drill hole prior to flushing. In addition, each fracture zone showed a community composition distinct from that inhabiting the drill hole at corresponding depth. The highest diversity was detected from the 967-m fracture zone. We conclude that the applied packer method can successfully isolate and sample authentic microbial fracture-zone communities of deep bedrock environments.


Frontiers in Microbiology | 2015

Revealing the unexplored fungal communities in deep groundwater of crystalline bedrock fracture zones in Olkiluoto, Finland.

Elina Sohlberg; Malin Bomberg; Hanna Miettinen; Mari Nyyssönen; Heikki Salavirta; Minna Vikman; Merja Itävaara

The diversity and functional role of fungi, one of the ecologically most important groups of eukaryotic microorganisms, remains largely unknown in deep biosphere environments. In this study we investigated fungal communities in packer-isolated bedrock fractures in Olkiluoto, Finland at depths ranging from 296 to 798 m below surface level. DNA- and cDNA-based high-throughput amplicon sequencing analysis of the fungal internal transcribed spacer (ITS) gene markers was used to examine the total fungal diversity and to identify the active members in deep fracture zones at different depths. Results showed that fungi were present in fracture zones at all depths and fungal diversity was higher than expected. Most of the observed fungal sequences belonged to the phylum Ascomycota. Phyla Basidiomycota and Chytridiomycota were only represented as a minor part of the fungal community. Dominating fungal classes in the deep bedrock aquifers were Sordariomycetes, Eurotiomycetes, and Dothideomycetes from the Ascomycota phylum and classes Microbotryomycetes and Tremellomycetes from the Basidiomycota phylum, which are the most frequently detected fungal taxa reported also from deep sea environments. In addition some fungal sequences represented potentially novel fungal species. Active fungi were detected in most of the fracture zones, which proves that fungi are able to maintain cellular activity in these oligotrophic conditions. Possible roles of fungi and their origin in deep bedrock groundwater can only be speculated in the light of current knowledge but some species may be specifically adapted to deep subsurface environment and may play important roles in the utilization and recycling of nutrients and thus sustaining the deep subsurface microbial community.


Microbial Ecology | 2015

Heterotrophic Communities Supplied by Ancient Organic Carbon Predominate in Deep Fennoscandian Bedrock Fluids

Lotta Purkamo; Malin Bomberg; Mari Nyyssönen; Ilmo T. Kukkonen; Lasse Ahonen; Merja Itävaara

The deep subsurface hosts diverse life, but the mechanisms that sustain this diversity remain elusive. Here, we studied microbial communities involved in carbon cycling in deep, dark biosphere and identified anaerobic microbial energy production mechanisms from groundwater of Fennoscandian crystalline bedrock sampled from a deep drill hole in Outokumpu, Finland, by using molecular biological analyses. Carbon cycling pathways, such as carbon assimilation, methane production and methane consumption, were studied with cbbM, rbcL, acsB, accC, mcrA and pmoA marker genes, respectively. Energy sources, i.e. the terminal electron accepting processes of sulphate-reducing and nitrate-reducing communities, were assessed with detection of marker genes dsrB and narG, respectively. While organic carbon is scarce in deep subsurface, the main carbon source for microbes has been hypothesized to be inorganic carbon dioxide. However, our results demonstrate that carbon assimilation is performed throughout the Outokumpu deep scientific drill hole water column by mainly heterotrophic microorganisms such as Clostridia. The source of carbon for the heterotrophic microbial metabolism is likely the Outokumpu bedrock, mainly composed of serpentinites and metasediments with black schist interlayers. In addition to organotrophic metabolism, nitrate and sulphate are other possible energy sources. Methanogenic and methanotrophic microorganisms are scarce, but our analyses suggest that the Outokumpu deep biosphere provides niches for these organisms; however, they are not very abundant.


Microbial Ecology | 2006

A targeted real-time PCR assay for studying naphthalene degradation in the environment

Mari Nyyssönen; Reetta Piskonen; Merja Itävaara

A quantitative real-time polymerase chain reaction (PCR) assay was developed for monitoring naphthalene degradation during bioremediation processes. The phylogenetic affiliations of known naphthalene-hydroxylating dioxygenase genes were determined to target functionally related bacteria, and degenerate primers were designed on the basis of the close relationships among dioxygenase genes identified from naphthalene-degrading Proteobacteria. Evaluation of the amplification specificity demonstrated that the developed real-time PCR assay represents a rapid, precise means for the group-specific enumeration of naphthalene-degrading bacteria. According to validation with bacterial pure cultures, the assay discriminated between the targeted group of naphthalene dioxygenase sequences and genes in other naphthalene or aromatic hydrocarbon-degrading bacterial strains. Specific amplification of gene fragments sharing a high sequence similarity with the genes included in the assay design was also observed in soil samples recovered from large-scale remediation processes. The target genes could be quantified reproducibly at over five orders of magnitude down to 3 × 102 gene copies. To investigate the suitability of the assay in monitoring naphthalene biodegradation, the assay was applied in enumerating the naphthalene dioxygenase genes in a soil slurry microcosm. The results were in good agreement with contaminant mineralization and dot blot quantification of nahAc gene copies. Furthermore, the real-time PCR assay was found to be more sensitive than hybridization-based analysis.


Microorganisms | 2015

Rapid Reactivation of Deep Subsurface Microbes in the Presence of C-1 Compounds

Pauliina Rajala; Malin Bomberg; Riikka Kietäväinen; Ilmo T. Kukkonen; Lasse Ahonen; Mari Nyyssönen; Merja Itävaara

Microorganisms in the deep biosphere are believed to conduct little metabolic activity due to low nutrient availability in these environments. However, destructive penetration to long-isolated bedrock environments during construction of underground waste repositories can lead to increased nutrient availability and potentially affect the long-term stability of the repository systems, Here, we studied how microorganisms present in fracture fluid from a depth of 500 m in Outokumpu, Finland, respond to simple carbon compounds (C-1 compounds) in the presence or absence of sulphate as an electron acceptor. C-1 compounds such as methane and methanol are important intermediates in the deep subsurface carbon cycle, and electron acceptors such as sulphate are critical components of oxidation processes. Fracture fluid samples were incubated in vitro with either methane or methanol in the presence or absence of sulphate as an electron acceptor. Metabolic response was measured by staining the microbial cells with fluorescent dyes that indicate metabolic activity and transcriptional response with RT-qPCR. Our results show that deep subsurface microbes exist in dormant states but rapidly reactivate their transcription and respiration systems in the presence of C-1 substrates, particularly methane. Microbial activity was further enhanced by the addition of sulphate as an electron acceptor. Sulphate- and nitrate-reducing microbes were particularly responsive to the addition of C-1 compounds and sulphate. These taxa are common in deep biosphere environments and may be affected by conditions disturbed by bedrock intrusion, as from drilling and excavation for long-term storage of hazardous waste.

Collaboration


Dive into the Mari Nyyssönen's collaboration.

Top Co-Authors

Avatar

Merja Itävaara

VTT Technical Research Centre of Finland

View shared research outputs
Top Co-Authors

Avatar

Malin Bomberg

VTT Technical Research Centre of Finland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lasse Ahonen

Geological Survey of Finland

View shared research outputs
Top Co-Authors

Avatar

Anu Kapanen

VTT Technical Research Centre of Finland

View shared research outputs
Top Co-Authors

Avatar

Lotta Purkamo

VTT Technical Research Centre of Finland

View shared research outputs
Top Co-Authors

Avatar

Reetta Piskonen

VTT Technical Research Centre of Finland

View shared research outputs
Top Co-Authors

Avatar

Riikka Kietäväinen

Geological Survey of Finland

View shared research outputs
Top Co-Authors

Avatar

Aura Nousiainen

VTT Technical Research Centre of Finland

View shared research outputs
Top Co-Authors

Avatar

Heikki Salavirta

VTT Technical Research Centre of Finland

View shared research outputs
Researchain Logo
Decentralizing Knowledge