María A. Oliva
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by María A. Oliva.
Nature Structural & Molecular Biology | 2004
María A. Oliva; Suzanne C. Cordell; Jan Löwe
The prokaryotic tubulin homolog FtsZ polymerizes into a ring structure essential for bacterial cell division. We have used refolded FtsZ to crystallize a tubulin-like protofilament. The N- and C-terminal domains of two consecutive subunits in the filament assemble to form the GTPase site, with the C-terminal domain providing water-polarizing residues. A domain-swapped structure of FtsZ and biochemical data on purified N- and C-terminal domains show that they are independent. This leads to a model of how FtsZ and tubulin polymerization evolved by fusing two domains. In polymerized tubulin, the nucleotide-binding pocket is occluded, which leads to nucleotide exchange being the rate-limiting step and to dynamic instability. In our FtsZ filament structure the nucleotide is exchangeable, explaining why, in this filament, nucleotide hydrolysis is the rate-limiting step during FtsZ polymerization. Furthermore, crystal structures of FtsZ in different nucleotide states reveal notably few differences.
Journal of Biological Chemistry | 2003
María A. Oliva; Sonia Huecas; Juan Manuel Palacios; Jaime Martín-Benito; José M. Valpuesta
We have studied the assembly and GTPase of purified FtsZ from the hyperthermophilic archaeon Methanococcus jannaschii, a structural homolog of eukaryotic tubulin, employing wild-type FtsZ, FtsZ-His6 (histidine-tagged FtsZ), and the new mutants FtsZ-W319Y and FtsZ-W319Y-His6, with light scattering, nucleotide analyses, electron microscopy, and image processing methods. This has revealed novel properties of FtsZ. The GTPase of archaeal FtsZ polymers is suppressed in Na+-containing buffer, generating stabilized structures that require GDP addition for disassembly. FtsZ assembly is polymorphic. Archaeal FtsZ(wt) assembles into associated and isolated filaments made of two parallel protofilaments with a 43 Å longitudinal spacing between monomers, and this structure is also observed in bacterial FtsZ from Escherichia coli. The His6 extension facilitates the artificial formation of helical tubes and sheets. FtsZ-W319Y-His6 is an inactivated GTPase whose assembly remains regulated by GTP and Mg2+. It forms two-dimensional crystals made of symmetrical pairs of tubulin-like protofilaments, which associate in an antiparallel array (similarly to the known Ca2+-induced sheets of FtsZ-His6). In contrast to the lateral interactions of microtubule protofilaments, we propose that the primary assembly product of FtsZ is the double-stranded filament, one or several of which might form the dynamic Z ring during prokaryotic cell division.
The EMBO Journal | 2010
María A. Oliva; Sven Halbedel; Stefan M. V. Freund; Pavel Dutow; Thomas A. Leonard; Dmitry B. Veprintsev; Leendert W. Hamoen; Jan Löwe
DivIVA is a conserved protein in Gram‐positive bacteria that localizes at the poles and division sites, presumably through direct sensing of membrane curvature. DivIVA functions as a scaffold and is vital for septum site selection during vegetative growth and chromosome anchoring during sporulation. DivIVA deletion causes filamentous growth in Bacillus subtilis, whereas overexpression causes hyphal branching in Streptomyces coelicolor. We have determined the crystal structure of the N‐terminal (Nt) domain of DivIVA, and show that it forms a parallel coiled‐coil. It is capped with two unique crossed and intertwined loops, exposing hydrophobic and positively charged residues that we show here are essential for membrane binding. An intragenic suppressor introducing a positive charge restores membrane binding after mutating the hydrophobic residues. We propose that the hydrophobic residues insert into the membrane and that the positively charged residues bind to the membrane surface. A low‐resolution crystal structure of the C‐terminal (Ct) domain displays a curved tetramer made from two parallel coiled‐coils. The Nt and Ct parts were then merged into a model of the full length, 30 nm long DivIVA protein.
Proceedings of the National Academy of Sciences of the United States of America | 2012
María A. Oliva; Antonio J. Martín-Galiano; Yoshihiko Sakaguchi
Partition systems are responsible for the process whereby large and essential plasmids are accurately positioned to daughter cells during bacterial division. They are typically made of three components: a centromere-like DNA zone, an adaptor protein, and an assembling protein that is either a Walker-box ATPase (type I) or an actin-like ATPase (type II). A recently described type III segregation system has a tubulin/FtsZ-like protein, called TubZ, for plasmid movement. Here, we present the 2.3 Å structure and dynamic assembly of a TubZ tubulin homolog from a bacteriophage and unravel the Clostridium botulinum phage c-st type III partition system. Using biochemical and biophysical approaches, we prove that a gene upstream from tubZ encodes the partner TubR and localize the centromeric region (tubS), both of which are essential for anchoring phage DNA to the motile TubZ filaments. Finally, we describe a conserved fourth component, TubY, which modulates the TubZ-R-S complex interaction.
Journal of Biological Chemistry | 2011
Antonio J. Martín-Galiano; María A. Oliva; Laura Sanz; Anamitra Bhattacharyya; Marina Serna; Hugo Yébenes; José M. Valpuesta
The structure of the unique bacterial tubulin BtubA/B from Prosthecobacter is very similar to eukaryotic αβ-tubulin but, strikingly, BtubA/B fold without eukaryotic chaperones. Our sequence comparisons indicate that BtubA and BtubB do not really correspond to either α- or β-tubulin but have mosaic sequences with intertwining features from both. Their nucleotide-binding loops are more conserved, and their more divergent sequences correspond to discrete surface zones of tubulin involved in microtubule assembly and binding to eukaryotic cytosolic chaperonin, which is absent from the Prosthecobacter dejongeii draft genome. BtubA/B cooperatively assembles over a wider range of conditions than αβ-tubulin, forming pairs of protofilaments that coalesce into bundles instead of microtubules, and it lacks the ability to differentially interact with divalent cations and bind typical tubulin drugs. Assembled BtubA/B contain close to one bound GTP and GDP. Both BtubA and BtubB subunits hydrolyze GTP, leading to disassembly. The mutant BtubA/B-S144G in the tubulin signature motif GGG(T/S)G(S/T)G has strongly inhibited GTPase, but BtubA-T147G/B does not, suggesting that BtubB is a more active GTPase, like β-tubulin. BtubA/B chimera bearing the β-tubulin loops M, H1-S2, and S9-S10 in BtubB fold, assemble, and have reduced GTPase activity. However, introduction of the α-tubulin loop S9-S10 with its unique eight-residue insertion impaired folding. From the sequence analyses, its primitive assembly features, and the properties of the chimeras, we propose that BtubA/B were acquired shortly after duplication of a spontaneously folding α- and β-tubulin ancestor, possibly by horizontal gene transfer from a primitive eukaryotic cell, followed by divergent evolution.
Mbio | 2017
James Wagstaff; Matthew Tsim; María A. Oliva; Alba García-Sanchez; Danguole Kureisaite-Ciziene; Jan Löwe
The muscle-specific transcription factors Myf5 and Mrf4 are two of the four myogenic regulatory factors involved in the transcriptional cascade responsible for skeletal myogenesis in the vertebrate embryo. Myf5 is the first of these four genes to be expressed in the mouse. We have previously described discrete enhancers that drive Myf5 expression in epaxial and hypaxial somites, branchial arches and central nervous system, and argued that additional elements are required for proper expression (Summerbell, D., Ashby, P. R., Coutelle, O., Cox, D., Yee, S. P. and Rigby, P. W. J. (2000) Development 127, 3745-3757). We have now investigated the transcriptional regulation of both Myf5 and Mrf4 using bacterial artificial chromosome transgenesis. We show that a clone containing Myf5 and 140 kb of upstream sequences is sufficient to recapitulate the known expression patterns of both genes. Our results confirm and reinforce the conclusion of our earlier studies, that Myf5 expression is regulated differently in each of a considerable number of populations of muscle progenitors, and they begin to illuminate the evolutionary origins of this complex regulation. We further show that separate elements are involved in the activation and maintenance of expression in the various precursor populations, reflecting the diversity of the signals that control myogenesis. Mrf4 expression requires at least four elements, one of which may be shared with Myf5, providing a possible explanation for the linkage of these genes throughout vertebrate phylogeny. Further complexity is revealed by the demonstration that elements which control Mrf4 and Myf5 are embedded in an unrelated neighbouring gene.
Frontiers in Molecular Biosciences | 2016
María A. Oliva
Bacterial extrachromosomal DNAs often contribute to virulence in pathogenic organisms or facilitate adaptation to particular environments. The transmission of genetic information from one generation to the next requires sufficient partitioning of DNA molecules to ensure that at least one copy reaches each side of the division plane and is inherited by the daughter cells. Segregation of the bacterial chromosome occurs during or after replication and probably involves a strategy in which several protein complexes participate to modify the folding pattern and distribution first of the origin domain and then of the rest of the chromosome. Low-copy number plasmids rely on specialized partitioning systems, which in some cases use a mechanism that show striking similarity to eukaryotic DNA segregation. Overall, there have been multiple systems implicated in the dynamic transport of DNA cargo to a new cellular position during the cell cycle but most seem to share a common initial DNA partitioning step, involving the formation of a nucleoprotein complex called the segrosome. The particular features and complex topologies of individual segrosomes depend on both the nature of the DNA binding protein involved and on the recognized centromeric DNA sequence, both of which vary across systems. The combination of in vivo and in vitro approaches, with structural biology has significantly furthered our understanding of the mechanisms underlying DNA trafficking in bacteria. Here, I discuss recent advances and the molecular details of the DNA segregation machinery, focusing on the formation of the segrosome complex.
bioRxiv | 2016
James Wagstaff; Matt Tsim; María A. Oliva; Alba García-Sanchez; Danguole Kureisaite-Ciziene; Jan Löwe
Bacterial cell division in many organisms involves a constricting cytokinetic ring that is orchestrated by the tubulin-like protein FtsZ. FtsZ forms dynamic filaments close to the membrane at the site of division that have recently been shown to treadmill around the division ring, guiding septal wall synthesis. Here, using X-ray crystallography of Staphylococcus aureus SaFtsZ we reveal how an FtsZ can adopt two functionally distinct conformations, open and closed. The open form is found in SaFtsZ filaments formed in crystals and also in soluble filaments of E. coli FtsZ as deduced by cryoEM. The closed form is found within several crystal forms of two non-polymerising SaFtsZ mutants and corresponds to many previous FtsZ structures from other organisms. We argue that FtsZ undergoes a polymerisation-associated conformational switch. We show that such a switch provides explanations for both how treadmilling may occur within a single-stranded filament, and why filament assembly is cooperative.
Scientific Reports | 2017
Maria Eugenia Fuentes-Perez; Rafael Núñez-Ramírez; Alejandro Martín-González; David Juan-Rodríguez; Oscar Llorca; F. Moreno-Herrero; María A. Oliva
Cytomotive filaments are essential for the spatial organization in cells, showing a dynamic behavior based on nucleotide hydrolysis. TubZ is a tubulin-like protein that functions in extrachromosomal DNA movement within bacteria. TubZ filaments grow in a helical fashion following treadmilling or dynamic instability, although the underlying mechanism is unclear. We have unraveled the molecular basis for filament assembly and dynamics combining electron and atomic force microscopy and biochemical analyses. Our findings suggest that GTP caps retain the filament helical structure and hydrolysis triggers filament stiffening upon disassembly. We show that the TubZ C-terminal tail is an unstructured domain that fulfills multiple functions contributing to the filament helical arrangement, the polymer remodeling into tubulin-like rings and the full disassembly process. This C-terminal tail displays the binding site for partner proteins and we report how it modulates the interaction of the regulator protein TubY.
Methods in Cell Biology | 2013
María A. Oliva
Bacterial tubulin BtubA/B is a close structural homolog of eukaryotic αβ-tubulin, thought to have originated by transfer of ancestral tubulin genes from a primitive eukaryotic cell to a bacterium, followed by divergent evolution. BtubA and BtubB are easily expressed homogeneous polypeptides that fold spontaneously without eukaryotic chaperone requirements, associate into weak BtubA/B heterodimers and assemble forming tubulin-like protofilaments. These protofilaments coalesce into pairs and bundles, or form five-protofilament tubules proposed to share the architecture of microtubules. Bacterial tubulin is an attractive framework for tubulin engineering. Potential applications include humanizing different sections of bacterial tubulin with the aims of creating recombinant binding sites for antitumor drugs, obtaining well-defined substrates for the enzymes responsible for tubulin posttranslational modification, or bacterial microtubule-like polymeric trails for motor proteins. Several divergent sequences from the surface loops of bacterial tubulin have already been replaced by the corresponding eukaryotic sequences, yielding soluble folded chimeras. We describe the purification protocol of untagged bacterial tubulin BtubA/B by means of ion exchange, size exclusion chromatography, and an assembly-disassembly cycle. This is followed by methods and examples to characterize its assembly, employing light scattering, sedimentation, and electron microscopy.