Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria Abrahamsson is active.

Publication


Featured researches published by Maria Abrahamsson.


Physical Chemistry Chemical Physics | 2014

Triplet–triplet annihilation photon-upconversion: towards solar energy applications

Victor Gray; Damir Dzebo; Maria Abrahamsson; Bo Albinsson; Kasper Moth-Poulsen

Solar power production and solar energy storage are important research areas for development of technologies that can facilitate a transition to a future society independent of fossil fuel based energy sources. Devices for direct conversion of solar photons suffer from poor efficiencies due to spectrum losses, which are caused by energy mismatch between the optical absorption of the devices and the broadband irradiation provided by the sun. In this context, photon-upconversion technologies are becoming increasingly interesting since they might offer an efficient way of converting low energy solar energy photons into higher energy photons, ideal for solar power production and solar energy storage. This perspective discusses recent progress in triplet-triplet annihilation (TTA) photon-upconversion systems and devices for solar energy applications. Furthermore, challenges with evaluation of the efficiency of TTA-photon-upconversion systems are discussed and a general approach for evaluation and comparison of existing systems is suggested.


Journal of the American Chemical Society | 2011

Non-Nernstian Two-Electron Transfer Photocatalysis at Metalloporphyrin–TiO2 Interfaces

Shane Ardo; Darren Achey; Amanda J. Morris; Maria Abrahamsson; Gerald J. Meyer

A long-standing question in the photochemical sciences concerns how to integrate single-electron transfers to catalytic multielectron transfer reactions that produce useful chemical fuels. Here we provide a strategy for the two-electron formation of C-C bonds with molecular catalysts anchored to semiconductor nanocrystallites. The blue portion of the solar spectrum provides band gap excitation of the semiconductor while longer wavelengths of light initiate homolytic cleavage of metal-carbon bonds that, after interfacial charge transfer, restore the catalyst. The semiconductor utilized was the anatase polymorph of TiO(2) present as a nanocrystalline, mesoporous thin film. The catalyst was cobalt meso-5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin chloride, Co(TCPP)Cl. For this catalyst and iron protoporphyrin IX chloride, Fe(PPIX)Cl, two distinct and sequential metal-based M(III/II) and M(II/I) reductions were observed under band gap illumination. Spectroelectrochemical characterization indicated that both reductions were non-Nernstian, behavior attributed to an environmentally dependent potential drop across the molecule-semiconductor interface. Reaction of Co(I)(TCPP)/TiO(2) with organobromides (RBr = 1-Br-hexane or benzyl bromide) resulted in the formation of Co(III)-R(TCPP)/TiO(2). Visible light excitation induced homolytic cleavage of the Co-C bond and the formation of C-C-bonded products. The reactions were catalytic when band gap excitation or an electrochemical bias provided TiO(2) electrons to the oxidized catalyst. Sustained photocurrents were quantified in photoelectrosynthetic solar cells under forward bias.


Inorganic Chemistry | 2013

Lifetime heterogeneity of DNA-bound dppz complexes originates from distinct intercalation geometries determined by complex-complex interactions.

Johanna Andersson; Louise H. Fornander; Maria Abrahamsson; Eimer Tuite; Par̈ Nordell; Per Lincoln

Despite the extensive interest in structurally explaining the photophysics of DNA-bound [Ru(phen)(2)dppz](2+) and [Ru(bpy)(2)dppz](2+), the origin of the two distinct emission lifetimes of the pure enantiomers when intercalated into DNA has remained elusive. In this report, we have combined a photophysical characterization with a detailed isothermal titration calorimetry study to investigate the binding of the pure Δ and Λ enantiomers of both complexes with [poly(dAdT)](2). We find that a binding model with two different binding geometries, proposed to be symmetric and canted intercalation from the minor groove, as recently reported in high-resolution X-ray structures, is required to appropriately explain the data. By assigning the long emission lifetime to the canted binding geometry, we can simultaneously fit both calorimetric data and the binding-density-dependent changes in the relative abundance of the two emission lifetimes using the same binding model. We find that all complex-complex interactions are slightly unfavorable for Δ-[Ru(bpy)(2)dppz](2+), whereas interactions involving a complex canted away from a neighbor are favorable for the other three complexes. We also conclude that Δ-[Ru(bpy)(2)dppz](2+) preferably binds isolated, Δ-[Ru(phen)(2)dppz](2+) preferably binds as duplets of canted complexes, and that all complexes are reluctant to form longer consecutive sequences than triplets. We propose that this is due to an interplay of repulsive complex-complex and attractive complex-DNA interactions modulated by allosteric DNA conformation changes that are largely affected by the nature of the ancillary ligands.


Inorganic Chemistry | 2012

New Dicarboxylic Acid Bipyridine Ligand for Ruthenium Polypyridyl Sensitization of TiO2

William B. Heuer; Hai Long Xia; William Ward; Zhen Zhou; Wayne H. Pearson; Maxime A. Siegler; Amy A. Narducci Sarjeant; Maria Abrahamsson; Gerald J. Meyer

An ambidentate dicarboxylic acid bipyridine ligand, (4,5-diazafluoren-9-ylidene) malonic acid (dfm), was synthesized for coordination to Ru(II) and mesoporous nanocrystalline (anatase) TiO(2) thin films. The dfm ligand provides a conjugated pathway from the pyridyl rings to the carbonyl carbons of the carboxylic acid groups. X-ray crystal structures of [Ru(bpy)(2)(dfm)]Cl(2) and the corresponding diethyl ester compound, [Ru(bpy)(2)(defm)](PF(6))(2), were obtained. The compounds displayed intense metal-to-ligand charge transfer (MLCT) absorption bands in the visible region (ε > 11,000 M(-1) cm(-1) for [Ru(bpy)(2)(dfm)](PF(6))(2) in acetonitrile). Significant room temperature photoluminescence, PL, was absent in CH(3)CN but was observed at 77 K in a 4:1 EtOH:MeOH (v:v) glass. Cyclic voltammetry measurements revealed quasi-reversible Ru(III/II) electrochemistry. Ligand reductions were quasi-reversible for the diethyl ester compound [Ru(bpy)(2)(defm)](2+), but were irreversible for [Ru(bpy)(2)(dfm)](2+). Both compounds were anchored to TiO(2) thin films by overnight reactions in CH(3)CN to yield saturation surface coverages of 3 × 10(-8) mol/cm(2). Attenuated total reflection infrared measurements revealed that the [Ru(bpy)(2)(dfm)](2+) compound was present in the deprotonated carboxylate form when anchored to the TiO(2) surface. The MLCT excited states of both compounds injected electrons into TiO(2) with quantum yields of 0.70 in 0.1 M LiClO(4) CH(3)CN. Micro- to milli-second charge recombination yielded ground state products. In regenerative solar cells with 0.5 M LiI/0.05 M I(2) in CH(3)CN, the Ru(bpy)(2)(dfm)/TiO(2) displayed incident photon-to-current efficiencies of 0.7 at the absorption maximum. Under the same conditions, the diethylester compound was found to rapidly desorb from the TiO(2) surface.


Chemical Communications | 2011

Slow excited state injection and charge recombination at star-shaped ruthenium polypyridyl compounds--TiO2 interfaces.

Patrik G. Johansson; Yongyi Zhang; Maria Abrahamsson; Gerald J. Meyer; Elena Galoppini

The excited states of two star-shaped nanometre-sized ruthenium polypyridyl compounds were largely unchanged when anchored to nanocrystalline TiO(2) thin films due to a highly symmetrical and rigid ligand structure that isolated the chromophoric core from the semiconductor. Interfacial electron transfer occurred on unusually slow time scales.


Chemsuschem | 2017

Evaluating Dihydroazulene/Vinylheptafulvene Photoswitches for Solar Energy Storage Applications

Zhihang Wang; Jonas Udmark; Karl Börjesson; Rita Rodrigues; Anna Roffey; Maria Abrahamsson; Mogens Brøndsted Nielsen; Kasper Moth-Poulsen

Abstract Efficient solar energy storage is a key challenge in striving toward a sustainable future. For this reason, molecules capable of solar energy storage and release through valence isomerization, for so‐called molecular solar thermal energy storage (MOST), have been investigated. Energy storage by photoconversion of the dihydroazulene/vinylheptafulvene (DHA/VHF) photothermal couple has been evaluated. The robust nature of this system is determined through multiple energy storage and release cycles at elevated temperatures in three different solvents. In a nonpolar solvent such as toluene, the DHA/VHF system can be cycled more than 70 times with less than 0.01 % degradation per cycle. Moreover, the [Cu(CH3CN)4]PF6‐catalyzed conversion of VHF into DHA was demonstrated in a flow reactor. The performance of the DHA/VHF couple was also evaluated in prototype photoconversion devices, both in the laboratory by using a flow chip under simulated sunlight and under outdoor conditions by using a parabolic mirror. Device experiments demonstrated a solar energy storage efficiency of up to 0.13 % in the chip device and up to 0.02 % in the parabolic collector. Avenues for future improvements and optimization of the system are also discussed.


Inorganic Chemistry | 2014

A homoleptic trisbidentate Ru(II) complex of a novel bidentate biheteroaromatic ligand based on quinoline and pyrazole groups: structural, electrochemical, photophysical, and computational characterization.

Martin Jarenmark; Lisa A. Fredin; Joachim H. J. Hedberg; Isa Doverbratt; Petter Persson; Maria Abrahamsson

We synthesized a new homoleptic, tris-bidentate complex [Ru(QPzH)3](2+) based on the novel biheteroaromatic, 8-(3-pyrazolyl)-quinoline ligand QPzH. The QPzH ligand was designed to reduce the distortions typically observed in complexes incorporating the 8-quinolinyl group into the ligand framework. This was indeed observed, and was also, as anticipated, found to facilitate the formation of tris-homoleptic Ru(II) complexes; [Ru(QPzH)3](2+) is the first reported tris-homoleptic complex with ligands based on the 8-quinolinyl group. The synthesis can either result in a statistical 3:1 mer/fac ratio of the complex, or, through controlled exposure to light, be tweaked to allow isolation of the pure mer isomer only. X-ray crystallography reveals three nonequivalent ligands, with significantly less strain than other quinoline-based bidentate ligands. The complex exhibits a nearly octahedral coordination geometry but shows large differences in bond lengths between the Ru core and the quinoline and pyrazoles, respectively. The Ru-N(pyrazole) bond distances are ∼2.04 Å, while the corresponding distances for Ru-N(quinoline) are ∼2.12 Å. Structural, photophysical, electrochemical, and theoretical characterization revealed a mer-Ru(II) complex with a low oxidation potential (0.57 V vs ferrocene(0/+)) attributed to the incorporation of the pyrazolyl group, a ground state absorption that is sensitive to the local environment of the complex, and a short-lived (3)MLCT excited state.


Inorganic Chemistry | 2016

Diastereomerization Dynamics of a Bistridentate Ru II Complex

Martin Jarenmark; Göran Carlström; Lisa A. Fredin; Joachim Hedberg Wallenstein; Isa Doverbratt; Maria Abrahamsson; Petter Persson

The unsymmetrical nature of a new tridentate ligand bis(quinolinyl)-1,3-pyrazole (DQPz) is exploited in a bistridentate Ru(II) complex [Ru(DQPz)2](2+) to elucidate an unexpected dynamic diastereomerism. Structural characterization based on a combination of nuclear magnetic resonance spectroscopy and density functional theory calculations reveals the first quantifiable diastereomerization dynamics for Ru complexes with fully conjugated tridentate heteroaromatic ligands. A mechanism that involves a large-scale twisting motion of the ligands is proposed to explain the dynamic interconversion between the observed diastereomers, and the analysis of both experiments and calculations reveals a potential energy landscape with a transition barrier for the diastereomerization of ∼70 kJ mol(-1). The structural flexibility demonstrated around the central transition metal ion has implications for integration of complexes into catalytic and photochemical applications.


Physical Chemistry Chemical Physics | 2018

Singlet and triplet energy transfer dynamics in self-assembled axial porphyrin–anthracene complexes: towards supra-molecular structures for photon upconversion

Victor Gray; Betül Küçüköz; Fredrik Edhborg; Maria Abrahamsson; Kasper Moth-Poulsen; Bo Albinsson

Energy and electron transfer reactions are central to many different processes and research fields, from photosynthesis and solar energy harvesting to biological and medical applications. Herein we report a comprehensive study of the singlet and triplet energy transfer dynamics in porphyrin-anthracene coordination complexes. Seven newly synthesized pyridine functionalized anthracene ligands, five with various bridge lengths and two dendrimer structures containing three and seven anthracene units, were prepared. We found that triplet energy transfer from ruthenium octaethylporphyrin to an axially coordinated anthracene is possible, and is in some cases followed by back triplet energy transfer to the porphyrin. The triplet energy transfer follows an exponential distance dependence with an attenuation factor, β, of 0.64 Å-1. Further, singlet energy transfer from anthracene to the ruthenium porphyrin appears to follow a R6 Förster distance dependence. Porphyrin-anthracene complexes are also used as triplet sensitizers for triplet-triplet annihilation (TTA) based photon upconversion, demonstrating their potential for photophysical and photochemical applications. The triplet lifetime of the complex is extended by the anthracene ligands, resulting in a threefold increase in the upconversion efficiency, ΦUC to 4.5%, compared to the corresponding ruthenium porphyrin-pyridine complex. Based on the results herein we discuss the future design of supra-molecular structures for TTA upconversion.


Photochemistry | 2016

Solar energy conversion using iron polypyridyl type photosensitizers - A viable route for the future?

Maria Abrahamsson

In this chapter, recent advances on the use of environmentally friendly iron-based photosensitizers are reviewed and compared with earlier investigations of similar compounds. The photophysical consequences of ligand design is considered together with theoretical approaches to establishing the detailed structure-property relationships.

Collaboration


Dive into the Maria Abrahamsson's collaboration.

Top Co-Authors

Avatar

Gerald J. Meyer

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Kasper Moth-Poulsen

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Victor Gray

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

William B. Heuer

United States Naval Academy

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bo Albinsson

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Valeria Saavedra Becerril

Chalmers University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge