Maria Baka
Katholieke Universiteit Leuven
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maria Baka.
International Journal of Food Microbiology | 2016
Maria Baka; Estefanía Noriega; Kristof Van Langendonck; Jan Van Impe
Food intrinsic factors e.g., food (micro)structure, compositional and physicochemical aspects, which are mutually dependent, influence microbial growth. While the effect of composition and physicochemical properties on microbial growth has been thoroughly assessed and characterised, the role of food (micro)structure still remains unravelled. Most studies on food (micro)structure focus on comparing planktonic growth in liquid (microbiological) media with colonial growth in/on solid-like systems or on real food surfaces. However, foods are not only liquids or solids; they can also be emulsions or gelled emulsions and have complex compositions. In this study, Listeria monocytogenes growth was studied on the whole spectrum of (micro)structure, in terms of food (model) systems. The model systems varied not only in (micro)structure, which was the target of the study, but also in compositional and physicochemical characteristics, which was an inevitable consequence of the (micro)structural variability. The compositional and physicochemical differences were mainly due to the presence or absence of fat and gelling agents. The targeted (micro)structures were: i) liquids, ii) aqueous gels, iii) emulsions and iv) gelled emulsions. Furthermore, the microbial dynamics were studied and compared in/on all these model systems, as well as on a compositionally predefined canned meat, developed in order to have equal compositional level to the gelled emulsion model system and represent a real food system. Frankfurter sausages were the targeted real foods, selected as a case study, to which the canned meat had similar compositional characteristics. All systems were vacuum packed and incubated at 4, 8 and 12°C. The most appropriate protocol for the preparation of the model systems was developed. The pH, water activity and resistance to penetration of the model systems were characterised. Results indicated that low temperature contributes to growth variations among the model systems. Additionally, the firmer the solid system, the faster L. monocytogenes grew on it. Finally, it was found that L. monocytogenes grows faster on canned meat and real Frankfurters, as found in a previous study, followed by liquids, aqueous gels, emulsions and gelled emulsions. This observation indicates that all model systems, developed in this study, underestimated L. monocytogenes growth. Despite some limitations, model systems are overall advantageous and therefore, their validation is always recommended prior to further use.
International Journal of Food Microbiology | 2017
María M. Lobete; Maria Baka; Estefanía Noriega; Etienne Jooken; Annick Monballiu; Sam de Beurme; Boudewijn Meesschaert; Jan Van Impe
Sugar is commonly substituted with stevia-based products in food industry and in our daily-life. This substitution results in a change in food product characteristic formula and properties that may affect the growth dynamics of food pathogenic and spoilage bacteria. This work studies the effect of table sugar (TS), laboratory sucrose (LS), commercial stevia (St) and steviol glycosides (SG) on the growth dynamics of Salmonella Typhimurium and Listeria monocytogenes. Experiments were carried out in general and minimal culture media at 3 equivalent concentration levels in terms of sweetness intensity (TS and LS at 3, 9 and 15% (w/v); St at 0.3, 0.9 and 1.5% (w/v); and SG at 0.01, 0.03 and 0.05% (w/v)). Incubation temperatures were: 4, 8 and 20°C for general media, and for minimal media 20°C. To decipher the role of these sweeteners, their concentration evolution in minimal media was determined via HPLC analysis. The results revealed slow maximum specific growth rates (μmax) of S. Typhimurium in general media with increasing concentrations of TS and LS at 20°C; and reduced maximum cell population (Nmax) at 8°C. The growth of L. monocytogenes in general culture media remains invariable independently of the sweetener added, except at 4°C. At this critical temperature, the presence of TS, LS and St seems to facilitate the growth of L. monocytogenes, presenting higher μmax values in comparison to SG and the control. Varying bacterial response to changes in media formulation suggests that further research is required, focusing on revealing the microbial dynamics in structured media, as well as in real food products.
Food Research International | 2017
Davy Verheyen; Maria Baka; Seline Glorieux; Barbara Duquenne; Ilse Fraeye; Torstein Skåra; Jan Van Impe
The effectiveness of predictive microbiology is limited by the lack of knowledge concerning the influence of food microstructure on microbial dynamics. Therefore, future modelling attempts should be based on experiments in structured food model systems as well as liquid systems. In this study, fish-based model systems with various microstructures were developed, i.e., two liquid systems (with and without xanthan gum), an emulsion, an aqueous gel, and a gelled emulsion. The microstructural effect was isolated by minimising compositional and physico-chemical changes among the different model systems. The systems were suitable for common growth and mild thermal inactivation experiments involving both homogeneous and surface inoculation. Average pH of the model systems was 6.36±0.03 and average aw was 0.988±0.002. The liquid system without xanthan gum behaved like a Newtonian fluid, while the emulsion and the liquid containing xanthan gum exhibited (non-Newtonian) pseudo-plastic behaviour. Both the aqueous gel and gelled emulsion were classified as strong gels, with a hardness of 1.35±0.07N and 1.25±0.05N, respectively. Fat droplet size of the emulsion and gelled emulsion model systems was evenly distributed around 1μm. In general, the set of model systems was proven to be suitable to study the influence of important aspects of food microstructure on microbial dynamics.
Journal of Applied Microbiology | 2018
Marlies Govaert; Cindy Smet; Maria Baka; T. Janssens; J.F. Van Impe
This research aims to develop strongly adherent and mature model biofilms (on a 20 cm² polystyrene surface) for two pathogenic species, i.e. Listeria monocytogenes and Salmonella Typhimurium. These model biofilms can be used as standards to study biofilms or to study/compare the influence of different inactivation technologies.
International Journal of Food Microbiology | 2018
Davy Verheyen; Araceli Bolívar; Fernando Pérez-Rodríguez; Maria Baka; Torstein Skåra; Jan Van Impe
Traditionally, predictive growth models for food pathogens are developed based on experiments in broth media, resulting in models which do not incorporate the influence of food microstructure. The use of model systems with various microstructures is a promising concept to get more insight into the influence of food microstructure on microbial dynamics. By means of minimal variation of compositional and physicochemical factors, these model systems can be used to study the isolated effect of certain microstructural aspects on microbial growth, survival and inactivation. In this study, the isolated effect on microbial growth dynamics of Listeria monocytogenes of two food microstructural aspects and one aspect influenced by food microstructure were investigated, i.e., the nature of the food matrix, the presence of fat droplets, and microorganism growth morphology, respectively. To this extent, fish-based model systems with various microstructures were used, i.e., a liquid, a second more viscous liquid system containing xanthan gum, an emulsion, an aqueous gel, and a gelled emulsion. Growth experiments were conducted at 4 and 10 °C, both using homogeneous and surface inoculation (only for the gelled systems). Results regarding the influence of the growth morphology indicated that the lag phase of planktonic cells in the liquid system was similar to the lag phase of submerged colonies in the xanthan system. The lag phase of submerged colonies in each gelled system was considerably longer than the lag phase of surface colonies on these respective systems. The maximum specific growth rate of planktonic cells in the liquid system was significantly lower than for submerged colonies in the xanthan system at 10 °C, while no significant differences were observed at 4 °C. The maximum cell density was higher for submerged colonies than for surface colonies. The nature of the food matrix only exerted an influence on the maximum specific growth rate, which was significantly higher in the viscous systems than in the gelled systems. The presence of a small amount of fat droplets improved the growth of L. monocytogenes at 4 °C, resulting in a shorter lag phase and a higher maximum specific growth rate. The obtained results could be useful in the determination of a set of suitable microstructural parameters for future predictive models that incorporate the influence of food microstructure on microbial dynamics.
International Journal of Food Microbiology | 2018
Katherine M. Costello; Jorge Gutierrez-Merino; Madeleine Bussemaker; Marco Ramaioli; Maria Baka; Jan Van Impe; Eirini Velliou
Minimal processing for microbial decontamination, such as the use of natural antimicrobials, is gaining interest in the food industry as these methods are generally milder than conventional processing, therefore better maintaining the nutritional content and sensory characteristics of food products. The aim of this study was to quantify the impact of (i) structural composition and complexity, (ii) growth location and morphology, and (iii) the natural antimicrobial nisin, on the microbial dynamics of Listeria innocua. More specifically, viscoelastic food model systems of various compositions and internal structure were developed and characterised, i.e. monophasic Xanthan gum-based and biphasic Xanthan gum/Whey protein-based viscoelastic systems. The microbial dynamics of L. innocua at 10 °C, 30 °C and 37 °C were monitored and compared for planktonic growth in liquid, or in/on (immersed or surface colony growth) the developed viscoelastic systems, with or without a sublethal concentration of nisin. Microscopy imaging was used to determine the bacterial colony size and spatial organisation in/on the viscoelastic systems. Selective growth of L. innocua on the protein phase of the developed biphasic system was observed for the first time. Additionally, significant differences were observed in the colony size and distribution in the monophasic Xanthan gum-based systems depending on (i) the type of growth (surface/immersed) and (ii) the Xanthan gum concentration. Furthermore, the system viscosity in monophasic Xanthan gum-based systems had a protective role against the effects of nisin for immersed growth, and a further inhibitory effect for surface growth at a suboptimal temperature (10 °C). These findings give a systematic quantitative insight on the impact of nisin as an environmental challenge on the growth and spatial organisation of L. innocua, in viscoelastic food model systems of various structural compositions/complexities. This study highlights the importance of accounting for system structural composition/complexity when designing minimal food processing methods with natural antimicrobials.
Journal of Food Safety | 2015
Maria Baka; Estefanía Noriega; Ioanna Stamati; Filip Logist; Jan Van Impe
Food Research International | 2015
Maria Baka; Estefanía Noriega; Efstathia Tsakali; Jan Van Impe
Food Research International | 2014
Maria Baka; Estefanía Noriega; Laurence Mertens; Eva Van Derlinden; Jan Van Impe
Food Control | 2013
Maria Baka; Eva Van Derlinden; Kathleen Boons; Laurence Mertens; Jan Van Impe