Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria C. DeRosa is active.

Publication


Featured researches published by Maria C. DeRosa.


Coordination Chemistry Reviews | 2002

Photosensitized singlet oxygen and its applications

Maria C. DeRosa; Robert J. Crutchley

The study of singlet molecular oxygen production and reactivity has emerged as a rich and diverse area with implications in fields ranging from polymer science to cancer therapy. In this review, we address the photophysical properties of singlet oxygen and of the photosensitizers used in its generation. Photosensitizers based on organic molecules and coordination compounds are examined and compared. Recent advances in the photosensitized production of singlet oxygen and its uses in photochemistry and photobiology are highlighted, with particular focus on its role in wastewater treatment, fine chemical synthesis, and photodynamic therapy (PDT). Future directions in photosensitizer development and singlet oxygen applications are also explored. # 2002 Elsevier Science B.V. All rights reserved.


Journal of Nucleic Acids | 2012

Challenges and Opportunities for Small Molecule Aptamer Development

Maureen McKeague; Maria C. DeRosa

Aptamers are single-stranded oligonucleotides that bind to targets with high affinity and selectivity. Their use as molecular recognition elements has emerged as a viable approach for biosensing, diagnostics, and therapeutics. Despite this potential, relatively few aptamers exist that bind to small molecules. Small molecules are important targets for investigation due to their diverse biological functions as well as their clinical and commercial uses. Novel, effective molecular recognition probes for these compounds are therefore of great interest. This paper will highlight the technical challenges of aptamer development for small molecule targets, as well as the opportunities that exist for their application in biosensing and chemical biology.


Nature Nanotechnology | 2010

Nanotechnology in fertilizers

Maria C. DeRosa; Carlos M. Monreal; Morris Schnitzer; Ryan Walsh; Yasir Sultan

To the Editor — Nitrogen, which is a key nutrient source for food, biomass, and fibre production in agriculture, is by far the most important element in fertilizers when judged in terms of the energy required for its synthesis, tonnage used and monetary value. However, compared with amounts of nitrogen applied to soil, the nitrogen use efficiency (NUE) by crops is very low. Between 50 and 70% of the nitrogen applied using conventional fertilizers — plant nutrient formulations with dimensions greater than 100 nm — is lost owing to leaching in the form of water soluble nitrates, emission of gaseous ammonia and nitrogen oxides, and long-term incorporation of mineral nitrogen into soil organic matter by soil microorganisms1. Numerous attempts to increase the NUE have so far met with little success, and the time may have come to apply nanotechnology to solve some of these problems. Carbon nanotubes were recently shown to penetrate tomato seeds2, and zinc oxide nanoparticles were shown to enter the root tissue of ryegrass3 (Fig. 1). This suggests that new nutrient delivery systems that exploit the nanoscale porous domains on plant surfaces can be developed. The potential use of nanotechnology to improve fertilizer formulations, however, may have been hindered by reduced research funding and the lack of clear regulations and innovation policies. Current patent literature shows that the use of nanotechnology in fertilizer development remains relatively low (about 100 patents and patent applications between 1998 and 2008) compared with pharmaceuticals (more than 6,000 patents and patent applications over the same period)4. A nanofertilizer refers to a product that delivers nutrients to crops in one of three ways. The nutrient can be encapsulated inside nanomaterials such as nanotubes or nanoporous materials, coated with a thin protective polymer film, or delivered as particles or emulsions of nanoscale dimensions. Owing to a high surface area to volume ratio, the effectiveness of nanofertilizers may surpass the most innovative polymer-coated conventional fertilizers, which have seen little improvement in the past ten years. Ideally, nanotechnology could provide devices and mechanisms to synchronize the release of nitrogen (from fertilizers) with its uptake by crops; the nanofertilizers should release the nutrients on-demand while preventing them from prematurely converting into chemical/gaseous forms that cannot be absorbed by plants. This can be achieved by preventing nutrients from interacting with soil, water and microorganisms, and releasing nutrients only when they can be directly internalized by the plant. Examples of these nanostrategies are beginning to emerge. Zinc–aluminiumlayered double-hydroxide nanocomposites have been used for the controlled release of chemical compounds that regulate plant growth5. Improved yields have been claimed for fertilizers that are incorporated into cochleate nanotubes (rolled-up lipid bilayer sheets)6. The release of nitrogen by urea hydrolysis has been controlled through the insertion of urease enzymes into nanoporous silica7. Although these approaches are promising, they lack mechanisms that can recognize and respond to the needs of the plant and changes in nitrogen levels in the soil. The development of functional nanoscale films8 and devices has the potential to produce significant gains in the NUE and crop production. In addition to increasing the NUE, nanotechnology might be able to improve the performance of fertilizers in other ways. For example, owing to its photocatalytic property, nanosize titanium dioxide has been incorporated into fertilizers as a bactericidal additive. Moreover, titanium dioxide may also lead to improved crop yield through the photoreduction of nitrogen gas9. Furthermore, nanosilica particles absorbed by roots have been shown to form films at the cell walls, which can enhance the plant’s resistance to stress and lead to improved yields10. Clearly, there is an opportunity for nanotechnology to have a profound impact on energy, the economy and the environment, by improving fertilizer products. New prospects for integrating nanotechnologies into fertilizers should be explored, cognizant of any potential risk to the environment or to human health. With targeted efforts by governments and academics in developing such enabled agriproducts, we believe that nanotechnology will be transformative in this field. ❐


Journal of the American Chemical Society | 2011

Modulation of electronic couplings within Ru2-polyyne frameworks.

Bin Xi; Isiah P.-C. Liu; Guo-Lin Xu; Mohommad M. R. Choudhuri; Maria C. DeRosa; Robert J. Crutchley; Tong Ren

Dimers of [Ru(2)(Xap)(4)] bridged by 1,3,5-hexatriyn-diyl (Xap are 2-anilinopyridinate and its aniline substituted derivatives), [Ru(2)(Xap)(4)](2)(μ-C(6)) (1), were prepared. Compounds 1 reacted with 1 equiv of tetracyanoethene (TCNE) to yield the cyclo-addition/insertion products [Ru(2)(Xap)(4)](2){μ-C≡CC(C(CN)(2))-C(C(CN)(2))C≡C} (2) and 1 equiv of Co(2)(dppm)(CO)(6) to yield the η(2)-Co(2) adducts to the middle C≡C bond, [Ru(2)(Xap)(4)](2)(μ-C(6))(Co(2)(dppm)(CO)(4)) (3). Voltammetric and spectroelectrochemical studies revealed that (i) two Ru(2) termini in 1 are sufficiently coupled with the monoanion (1(-)) as a Robin-Day class II/III mixed valence species; (ii) the coupling between two Ru(2) is still significant but somewhat weakened in 3; and (iii) the coupling between two Ru(2) is completely removed by the insertion of TCNE in 2. The attenuation of electronic couplings in 2 and 3 was further explored with both the X-ray diffraction study of representative compounds and spin-unrestricted DFT calculations.


International Journal of Molecular Sciences | 2010

Screening and Initial Binding Assessment of Fumonisin B1 Aptamers

Maureen McKeague; Charlotte R. Bradley; Annalisa De Girolamo; Angelo Visconti; J. David Miller; Maria C. DeRosa

Fumonisins are mycotoxins produced by Fusarium verticillioides and F. proliferatum, fungi that are ubiquitous in corn (maize). Insect damage and some other environmental conditions result in the accumulation of fumonisins in corn-based products worldwide. Current methods of fumonisin detection rely on the use of immunoaffinity columns and high-performance liquid chromatography (HPLC). The use of aptamers offers a good alternative to the use of antibodies in fumonisin cleanup and detection due to lower costs and improved stability. Aptamers are single-stranded oligonucleotides that are selected using Systematic Evolution of Ligands by EXponential enrichment (SELEX) for their ability to bind to targets with high affinity and specificity. Sequences obtained after 18 rounds of SELEX were screened for their ability to bind to fumonisin B1. Six unique sequences were obtained, each showing improved binding to fumonisin B1 compared to controls. Sequence FB1 39 binds to fumonisin with a dissociation constant of 100 ± 30 nM and shows potential for use in fumonisin biosensors and solid phase extraction columns.


Analytical Chemistry | 2011

In situ biosensing with a surface plasmon resonance fiber grating aptasensor.

Yanina Shevchenko; Tariq Francis; David A.D. Blair; Ryan Walsh; Maria C. DeRosa; Jacques Albert

Surface plasmon resonance (SPR) biosensors prepared using optical fibers can be used as a cost-effective and relatively simple-to-implement alternative to well established biosensor platforms for monitoring biomolecular interactions in situ or possibly in vivo. The fiber biosensor presented in this study utilizes an in-fiber tilted Bragg grating to excite the SPR on the surface of the sensor over a large range of external medium refractive indices, with minimal cross-sensitivity to temperature and without compromising the structural integrity of the fiber. The label-free biorecognition scheme used demonstrates that the sensor relies on the functionalization of the gold-coated fiber with aptamers, synthetic DNA sequences that bind with high specificity to a given target. In addition to monitoring the functionalization of the fiber by the aptamers in real-time, the results also show how the fiber biosensor can detect the presence of the aptamers target, in various concentrations of thrombin in buffer and serum solutions. The findings also show how the SPR biosensor can be used to evaluate the dissociation constant (K(d)), as the binding constant agrees with values already reported in the literature.


Food Chemistry | 2011

Determination of ochratoxin A in wheat after clean-up through a DNA aptamer-based solid phase extraction column.

Annalisa De Girolamo; Maureen McKeague; J. David Miller; Maria C. DeRosa; Angelo Visconti

A DNA aptamer with high affinity and specificity to ochratoxin A (OTA) was conjugated to a coupling gel and used as sorbent for the preparation of solid phase extraction (SPE) columns. The SPE columns packed with 300μl oligosorbent (24nmol DNA) showed a linear (r=0.999) behaviour in the range of 0.4-500ng OTA. After optimisation of the extraction step, SPE columns were used for clean-up of OTA from wheat prior to liquid chromatographic (HPLC) analysis with fluorescence detection (FLD). Average recoveries from wheat samples spiked at levels of 0.5-50ng/g ranged from 74% to 88% (relative standard deviation <6%) with limits of detection and of quantification of 23 and 77pg/g, respectively. The comparative HPLC/FLD analyses of 33 naturally contaminated durum wheat samples cleaned-up on both aptamer-SPE and immunoaffinity (IMA) columns showed a good correlation (r=0.990). Aptamer-SPE columns could be re-used up to five times without any loss of performance.


Sensors | 2015

Microfluidics Integrated Biosensors: A Leading Technology towards Lab-on-a-Chip and Sensing Applications

George Luka; Ali Ahmadi; Homayoun Najjaran; Evangelyn C. Alocilja; Maria C. DeRosa; Kirsten R. Wolthers; Ahmed Malki; Hassan A. Aziz; Asmaa Althani; Mina Hoorfar

A biosensor can be defined as a compact analytical device or unit incorporating a biological or biologically derived sensitive recognition element immobilized on a physicochemical transducer to measure one or more analytes. Microfluidic systems, on the other hand, provide throughput processing, enhance transport for controlling the flow conditions, increase the mixing rate of different reagents, reduce sample and reagents volume (down to nanoliter), increase sensitivity of detection, and utilize the same platform for both sample preparation and detection. In view of these advantages, the integration of microfluidic and biosensor technologies provides the ability to merge chemical and biological components into a single platform and offers new opportunities for future biosensing applications including portability, disposability, real-time detection, unprecedented accuracies, and simultaneous analysis of different analytes in a single device. This review aims at representing advances and achievements in the field of microfluidic-based biosensing. The review also presents examples extracted from the literature to demonstrate the advantages of merging microfluidic and biosensing technologies and illustrate the versatility that such integration promises in the future biosensing for emerging areas of biological engineering, biomedical studies, point-of-care diagnostics, environmental monitoring, and precision agriculture.


Toxins | 2014

Selection and Characterization of a Novel DNA Aptamer for Label-Free Fluorescence Biosensing of Ochratoxin A

Maureen McKeague; Ranganathan Velu; Kayla Hill; Viola Bardóczy; Tamás Mészáros; Maria C. DeRosa

Nucleic acid aptamers are emerging as useful molecular recognition tools for food safety monitoring. However, practical and technical challenges limit the number and diversity of available aptamer probes that can be incorporated into novel sensing schemes. This work describes the selection of novel DNA aptamers that bind to the important food contaminant ochratoxin A (OTA). Following 15 rounds of in vitro selection, sequences were analyzed for OTA binding. Two of the isolated aptamers demonstrated high affinity binding and selectivity to this mycotoxin compared to similar food adulterants. These sequences, as well as a truncated aptamer (minimal sequence required for binding), were incorporated into a SYBR® Green I fluorescence-based OTA biosensing scheme. This label-free detection platform is capable of rapid, selective, and sensitive OTA quantification with a limit of detection of 9 nM and linear quantification up to 100 nM.


Biochemical and Biophysical Research Communications | 2009

Retention of function in the DNA homolog of the RNA dopamine aptamer.

Ryan Walsh; Maria C. DeRosa

While it is generally accepted that the functional tertiary structures formed by RNA cannot be replicated by a deoxy version of the same sequence, here we demonstrate conservation of function for a DNA homolog of an RNA aptamer. Using fluorescence anisotropy experiments, this work demonstrates that the all-DNA version of the RNA dopamine aptamer is able to bind dopamine with improved affinity and similar specificity relative to the RNA aptamer. Mutation studies suggest that the binding site is maintained in both structure types. These findings will help to elucidate what sequences and secondary structures allow for retention of function in both RNA and DNA.

Collaboration


Dive into the Maria C. DeRosa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carlos M. Monreal

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge