Carlos M. Monreal
Agriculture and Agri-Food Canada
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Carlos M. Monreal.
Nature Nanotechnology | 2010
Maria C. DeRosa; Carlos M. Monreal; Morris Schnitzer; Ryan Walsh; Yasir Sultan
To the Editor — Nitrogen, which is a key nutrient source for food, biomass, and fibre production in agriculture, is by far the most important element in fertilizers when judged in terms of the energy required for its synthesis, tonnage used and monetary value. However, compared with amounts of nitrogen applied to soil, the nitrogen use efficiency (NUE) by crops is very low. Between 50 and 70% of the nitrogen applied using conventional fertilizers — plant nutrient formulations with dimensions greater than 100 nm — is lost owing to leaching in the form of water soluble nitrates, emission of gaseous ammonia and nitrogen oxides, and long-term incorporation of mineral nitrogen into soil organic matter by soil microorganisms1. Numerous attempts to increase the NUE have so far met with little success, and the time may have come to apply nanotechnology to solve some of these problems. Carbon nanotubes were recently shown to penetrate tomato seeds2, and zinc oxide nanoparticles were shown to enter the root tissue of ryegrass3 (Fig. 1). This suggests that new nutrient delivery systems that exploit the nanoscale porous domains on plant surfaces can be developed. The potential use of nanotechnology to improve fertilizer formulations, however, may have been hindered by reduced research funding and the lack of clear regulations and innovation policies. Current patent literature shows that the use of nanotechnology in fertilizer development remains relatively low (about 100 patents and patent applications between 1998 and 2008) compared with pharmaceuticals (more than 6,000 patents and patent applications over the same period)4. A nanofertilizer refers to a product that delivers nutrients to crops in one of three ways. The nutrient can be encapsulated inside nanomaterials such as nanotubes or nanoporous materials, coated with a thin protective polymer film, or delivered as particles or emulsions of nanoscale dimensions. Owing to a high surface area to volume ratio, the effectiveness of nanofertilizers may surpass the most innovative polymer-coated conventional fertilizers, which have seen little improvement in the past ten years. Ideally, nanotechnology could provide devices and mechanisms to synchronize the release of nitrogen (from fertilizers) with its uptake by crops; the nanofertilizers should release the nutrients on-demand while preventing them from prematurely converting into chemical/gaseous forms that cannot be absorbed by plants. This can be achieved by preventing nutrients from interacting with soil, water and microorganisms, and releasing nutrients only when they can be directly internalized by the plant. Examples of these nanostrategies are beginning to emerge. Zinc–aluminiumlayered double-hydroxide nanocomposites have been used for the controlled release of chemical compounds that regulate plant growth5. Improved yields have been claimed for fertilizers that are incorporated into cochleate nanotubes (rolled-up lipid bilayer sheets)6. The release of nitrogen by urea hydrolysis has been controlled through the insertion of urease enzymes into nanoporous silica7. Although these approaches are promising, they lack mechanisms that can recognize and respond to the needs of the plant and changes in nitrogen levels in the soil. The development of functional nanoscale films8 and devices has the potential to produce significant gains in the NUE and crop production. In addition to increasing the NUE, nanotechnology might be able to improve the performance of fertilizers in other ways. For example, owing to its photocatalytic property, nanosize titanium dioxide has been incorporated into fertilizers as a bactericidal additive. Moreover, titanium dioxide may also lead to improved crop yield through the photoreduction of nitrogen gas9. Furthermore, nanosilica particles absorbed by roots have been shown to form films at the cell walls, which can enhance the plant’s resistance to stress and lead to improved yields10. Clearly, there is an opportunity for nanotechnology to have a profound impact on energy, the economy and the environment, by improving fertilizer products. New prospects for integrating nanotechnologies into fertilizers should be explored, cognizant of any potential risk to the environment or to human health. With targeted efforts by governments and academics in developing such enabled agriproducts, we believe that nanotechnology will be transformative in this field. ❐
Biology and Fertility of Soils | 1997
B. C. Liang; A. F. Mackenzie; Morris Schnitzer; Carlos M. Monreal; P. R. Voroney; R. P. Beyaert
Abstract Soil samples taken from four experimental sites that had been cropped to continuous corn for 3–11 years in Ontario and Quebec were analyzed to evaluate changes in quantity and quality of labile soil organic carbon under different nitrogen (N) fertility and tillage treatments. Addition of fertilizer N above soil test recommendations tended to decrease amounts of water-soluble organic carbon (WSOC) and microbial biomass carbon (MBC). The quality of the WSOC was characterized by 13C nuclear magnetic resonance and infrared spectrophotometry and the results indicated that carbohydrates, long-chain aliphatics and proteins were the major components of all extracts. Similar types of C were present in all of the soils, but an influence of management was evident. The quantity of soil MBC was positively related to the quantities of WSOC, carbohydrate C, and organic C, and negatively related to quantities of long-chain aliphatic C in the soil. The quantity of WSOC was positively related to the quantities of protein C, carbohydrate C, and negatively related to the quantity of carboxylic C. The quantity of soil MBC was not only related to quantities of soil WSOC but also to the quality of soil WSOC.
Canadian Journal of Soil Science | 1997
Carlos M. Monreal; H.-R. Schulten; H. Kodama
We used an integrated approach to describe soil organic matter (SOM) dynamics through known inorganic and organic components in aggregates of adjacent forested and cultivated Gleysolic soil. Mineral and SOM components were examined in water stable macroaggregates (>250 µm), microaggregates 1 (50–250 µm) and microaggregates 2 (<50 µm) fractions. SOM was characterized by pyrolysis-field ionization mass spectrometry (Py-FIMS), and soil minerals by X-ray diffraction analysis. The mean residence time of organic-C (OC) was determined using radiocarbon dating. OC turnover was determined using the natural abundance of native 13C and that derived from corn residue. We found that OC in macroaggregates was young (<100 yr), turned over in 14 yr, and consisted of OM typical of that found in tissues of plants and soil organisms. Chemical classes of compounds in macroaggregates consisted mainly of carbohydrates, lignin monomers and phenols, lignin dimers, lipids (alkanes, alkenes, n-alkyl esters), fatty acids, sterols, ...
Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes | 2007
Morris Schnitzer; Carlos M. Monreal; Glenn A. Facey; Peter B. Fransham
Fast pyrolysis of chicken manure produced two biooils (Fractions I and II) and a residual char. All four materials were analyzed by chemical methods, 13C and 1H Nuclear Magnetic Resonance Spectrometry (13C and 1H NMR), and Fourier Transform Infrared Spectrosphotometry (FTIR). The char showed the highest C content and the highest aromaticity. Of the two biooils Fraction II was higher in C, yield and calorific value but lower in N than Fraction I. The S and ash content of the two biooil fractions were low. The Cross Polarization Magic Angle Spinning (CP-MAS) 13C NMR spectrum of the initial chicken manure showed it to be rich in cellulose, which was a major component of sawdust used as bedding material. Nuclear Magnetic Resonance (NMR) spectra of the two biooils indicated that Fraction I was less aromatic than Fraction II. Among the aromatics in the two biooils, we were able to tentatively identify N-heterocyclics like indoles, pyridines, and pyrazines. FTIR spectra were generally in agreement with the NMR data. FTIR spectra of both biooils showed the presence of both primary and secondary amides and primary amines as well as N-heterocyclics such as pyridines, quinolines, and pyrimidines. The FTIR spectrum of the char resembled that of the initial chicken manure except that the concentration of carbohydrates was lower.
Bioresource Technology | 2009
Dharani D. Das; Morris Schnitzer; Carlos M. Monreal; Paul M. Mayer
Our earlier investigations on the chemical composition of biooils derived by the fast pyrolysis of chicken manure revealed the presence of more than 500 compounds. In order to simplify this heterogeneous and complex chemical system, we produced four biooil fractions namely strongly acidic fraction A, weakly acidic fraction B, basic fraction C and neutral fraction D on the basis of their solubilities in aqueous solutions at different pHs. The yield (wt/wt.%) for fraction A was 3%, for fraction B 21.3%, for fraction C 2.4% and for fraction D 32.4%, respectively. The four fractions were analyzed by elemental analyses, Fourier Transform infrared spectrophotometry (FTIR), (1)H and (13)C nuclear magnetic spectroscopy (NMR), and electrospray ionization mass spectrometry (ESI-MS). The major components of the four fractions were saturated and unsaturated fatty acids, N-heterocyclics, phenols, sterols, diols and alkylbenzenes. The pH separation system produced fractions of enhanced chemical homogeneity.
Biomacromolecules | 2009
Yasir Sultan; Ryan Walsh; Carlos M. Monreal; Maria C. DeRosa
Advances in many aptamer-based applications will require a better understanding of how an aptamers molecular recognition ability is affected by its incorporation into a suitable matrix. In this study, we investigated whether a model aptamer system, the sulforhodamine B aptamer, would retain its binding ability while embedded in a multilayer polyelectrolyte film. Thin films consisting of poly(diallyldimethylammonium chloride) as the polycation and both poly(sodium 4-styrene-sulfonate) and the aptamer as the polyanions were deposited by the layer-by-layer approach and were compared to films prepared using calf thymus DNA or a random single-stranded oligonucleotide. Data from UV-vis spectroscopy, quartz crystal microbalance studies, confocal microscopy, and time of flight secondary ion mass spectrometry confirm that the aptamers recognition of its target is retained, with no loss of specificity and only a modest reduction of binding affinity, while it is incorporated within the thin film. These findings open up a raft of new opportunities for the development and application of aptamer-based functional thin films.
Canadian Journal of Soil Science | 2001
D W Bergstrom; Carlos M. Monreal; E. St. Jacques
Concern about the global increase in atmospheric CO2 has focussed attention on C sequestration in soil and the influence of management practices on soil organic C (OC) stocks. Evaluation of management practices is required at scales comparable to farm management units, which encompass heterogeneous soils and different landforms. The objectives of this study were to describe the spatial dependence of soil OC mass in two adjacent fields with contrasting tillage practices on Black Chernozemic soils using geostatistics and relate it to topographic features and soil series. Mass of OC was measured for a surface layer, the A horizon and solum. The spatial dependence of OC mass was at a scale commensurate with topographic variation. Spatial analysis generally corroborated description of the sampling site by soil series, which represented differences in drainage as influenced by slope-position and redistribution of water across the landscape. Soil series alone or grouped by drainage class, therefore, provided a f...
Canadian Journal of Soil Science | 2000
Carlos M. Monreal; D W Bergstrom
We identified complexes of soil nutrient mineralising enzymes expressing the influence of land use, tillage system and texture on soil biochemical quality in production systems involving corn, soybean, wheat and oat. The activities of dehydrogenase, β-glucosidase, L-glutaminase, urease, alkaline phosphatase, and arylsulphatase were measured in 760 soil samples taken from the A horizon of uncultivated land and cultivated Gleysols and Luvisols cropped with conventional tillage (CT) and reduced tillage (RT) systems between 1994 and 1996.Discriminant analysis showed that an enzymatic decomposition factor captured 96% of the total dispersion in soil enzyme activity responding to type of land use and tillage system. The soil enzymes β-glucosidase, dehydrogenase and L-glutaminase contributed most to this factor and were sensitive indicators for assessing the health of microbial mineralisation processes of the C and N cycles. Two biochemical factors expressed the influence of texture on soil enzyme activity. The ...
Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes | 2007
Morris Schnitzer; Carlos M. Monreal; Gerald Jandl; Peter Leinweber; Peter B. Fransham
The initial chicken manure and the three fractions derived from it by fast pyrolysis, that is, the two biooils Fractions I and II as well as the residual char were analyzed by Curie-point pyrolysis-gas chromatography/mass spectrometry (Cp Py-GC/MS). The individual compounds identified were grouped into the following six compound classes: (a) N-heterocyclics; (b) substituted furans; (c) phenol and substituted phenols; (d) benzene and substituted benzenes; (e) carbocyclics; and (f) aliphatics. Of special interest were the relatively high concentrations of N-heterocyclics in biooil Fraction II which was obtained in the highest yield and had the highest calorific value. Prominent N-heterocyclics in biooil Fraction II were methyl-and ethyl-substituted pyrroles, pyridines, pyrimidine, pyrazines, and pteridine. Also noteworthy was the high abundance of aliphatics in biooil Fraction I and the char. The alkanes and alkenes in biooil Fraction I ranged from n-C7 to n-C18 and C7:1 to C18:1, respectively, and those in the char from n-C7 to n-C19 and C7:1 to C19:1, respectively. The N-heterocyclics in the two biooil Fractions came from the chicken manure, from proteinaceous materials during fast pyrolysis or were formed during the fast pyrolysis manure conversion by the Maillard reaction which involved the formation of N-heterocyclics by amino acids interacting with sugars.
Waste Management | 2015
Jorge Medina; Carlos M. Monreal; J. M. Barea; C. Arriagada; Fernando Borie; Pablo Cornejo
Agricultural activities produce vast amounts of organic residues including straw, unmarketable or culled fruit and vegetables, post-harvest or post-processing wastes, clippings and residuals from forestry or pruning operations, and animal manure. Improper disposal of these materials may produce undesirable environmental (e.g. odors or insect refuges) and health impacts. On the other hand, agricultural residues are of interest to various industries and sectors of the economy due to their energy content (i.e., for combustion), their potential use as feedstock to produce biofuels and/or fine chemicals, or as a soil amendments for polluted or degraded soils when composted. Our objective is review new biotechnologies that could be used to manage these residues for land application and remediation of contaminated and eroded soils. Bibliographic information is complemented through a comprehensive review of the physico-chemical fundamental mechanisms involved in the transformation and stabilization of organic matter by biotic and abiotic soil components.