Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria Chiara Deregibus is active.

Publication


Featured researches published by Maria Chiara Deregibus.


Journal of The American Society of Nephrology | 2009

Mesenchymal Stem Cell-Derived Microvesicles Protect Against Acute Tubular Injury

Stefania Bruno; Cristina Grange; Maria Chiara Deregibus; Raffaele A. Calogero; Silvia Saviozzi; Federica Collino; Laura Morando; Alessandro Busca; Michele Falda; Benedetta Bussolati; Ciro Tetta; Giovanni Camussi

Administration of mesenchymal stem cells (MSCs) improves the recovery from acute kidney injury (AKI). The mechanism may involve paracrine factors promoting proliferation of surviving intrinsic epithelial cells, but these factors remain unknown. In the current study, we found that microvesicles derived from human bone marrow MSCs stimulated proliferation in vitro and conferred resistance of tubular epithelial cells to apoptosis. The biologic action of microvesicles required their CD44- and beta1-integrin-dependent incorporation into tubular cells. In vivo, microvesicles accelerated the morphologic and functional recovery of glycerol-induced AKI in SCID mice by inducing proliferation of tubular cells. The effect of microvesicles on the recovery of AKI was similar to the effect of human MSCs. RNase abolished the aforementioned effects of microvesicles in vitro and in vivo, suggesting RNA-dependent biologic effects. Microarray analysis and quantitative real time PCR of microvesicle-RNA extracts indicate that microvesicles shuttle a specific subset of cellular mRNA, such as mRNAs associated with the mesenchymal phenotype and with control of transcription, proliferation, and immunoregulation. These results suggest that microvesicles derived from MSCs may activate a proliferative program in surviving tubular cells after injury via a horizontal transfer of mRNA.


Kidney International | 2010

Exosomes/microvesicles as a mechanism of cell-to-cell communication

Giovanni Camussi; Maria Chiara Deregibus; Stefania Bruno; Vincenzo Cantaluppi; Luigi Biancone

Microvesicles (MVs) are circular fragments of membrane released from the endosomal compartment as exosomes or shed from the surface membranes of most cell types. An increasing body of evidence indicates that they play a pivotal role in cell-to-cell communication. Indeed, they may directly stimulate target cells by receptor-mediated interactions or may transfer from the cell of origin to various bioactive molecules including membrane receptors, proteins, mRNAs, microRNAs, and organelles. In this review we discuss the pleiotropic biologic effects of MVs that are relevant for communication among cells in physiological and pathological conditions. In particular, we discuss their potential involvement in inflammation, renal disease, and tumor progression, and the evidence supporting a bidirectional exchange of genetic information between stem and injured cells. The transfer of gene products from injured cells may explain stem cell functional and phenotypic changes without the need of transdifferentiation into tissue cells. On the other hand, transfer of gene products from stem cells may reprogram injured cells to repair damaged tissues.


American Journal of Pathology | 2005

Isolation of Renal Progenitor Cells from Adult Human Kidney

Benedetta Bussolati; Stefania Bruno; Cristina Grange; Stefano Buttiglieri; Maria Chiara Deregibus; Dario Cantino; Giovanni Camussi

We describe here isolation and characterization of CD133+ cells derived from normal adult human kidney. These cells lacked the expression of hematopoietic markers and expressed PAX-2, an embryonic renal marker, suggesting their renal origin. Renal tissue-derived CD133+ cells and clones of individual cells were capable of expansion and limited self-renewal and differentiated in vitro into epithelial or endothelial cells. On subcutaneous implantation in SCID mice, the undifferentiated cells formed tubular structures expressing renal epithelial markers. At variance, when differentiated in endothelial cells, these cells formed functional vessels. On intravenous injection in SCID mice with glycerol-induced tubulonecrosis, the in vitro expanded renal-derived CD133+ cells homed into the injured kidney and integrated in tubules. We propose that CD133+ cells from kidney represent a multipotent adult resident stem cell population that may contribute to the repair of renal injury.


Cancer Research | 2011

Microvesicles Released from Human Renal Cancer Stem Cells Stimulate Angiogenesis and Formation of Lung Premetastatic Niche

Cristina Grange; Marta Tapparo; Federica Collino; Loriana Vitillo; Christian Damasco; Maria Chiara Deregibus; Ciro Tetta; Benedetta Bussolati; Giovanni Camussi

Recent studies suggest that tumor-derived microvesicles (MV) act as a vehicle for exchange of genetic information between tumor and stromal cells, engendering a favorable microenvironment for cancer development. Within the tumor mass, all cell types may contribute to MV shedding, but specific contributions to tumor progression have yet to be established. Here we report that a subset of tumor-initiating cells expressing the mesenchymal stem cell marker CD105 in human renal cell carcinoma releases MVs that trigger angiogenesis and promote the formation of a premetastatic niche. MVs derived only from CD105-positive cancer stem cells conferred an activated angiogenic phenotype to normal human endothelial cells, stimulating their growth and vessel formation after in vivo implantation in immunocompromised severe combined immunodeficient (SCID) mice. Furthermore, treating SCID mice with MVs shed from CD105-positive cells greatly enhanced lung metastases induced by i.v. injection of renal carcinoma cells. Molecular characterization of CD105-positive MVs defines a set of proangiogenic mRNAs and microRNAs implicated in tumor progression and metastases. Our results define a specific source of cancer stem cell-derived MVs that contribute to triggering the angiogenic switch and coordinating metastatic diffusion during tumor progression.


PLOS ONE | 2010

Microvesicles Derived from Adult Human Bone Marrow and Tissue Specific Mesenchymal Stem Cells Shuttle Selected Pattern of miRNAs

Federica Collino; Maria Chiara Deregibus; Stefania Bruno; Luca Sterpone; Giulia Aghemo; Laura Viltono; Ciro Tetta; Giovanni Camussi

Background Cell-derived microvesicles (MVs) have been described as a new mechanism of cell-to-cell communication. MVs after internalization within target cells may deliver genetic information. Human bone marrow derived mesenchymal stem cells (MSCs) and liver resident stem cells (HLSCs) were shown to release MVs shuttling functional mRNAs. The aim of the present study was to evaluate whether MVs derived from MSCs and HLSCs contained selected micro-RNAs (miRNAs). Methodology/Principal Findings MVs were isolated from MSCs and HLSCs. The presence in MVs of selected ribonucleoproteins involved in the traffic and stabilization of RNA was evaluated. We observed that MVs contained TIA, TIAR and HuR multifunctional proteins expressed in nuclei and stress granules, Stau1 and 2 implicated in the transport and stability of mRNA and Ago2 involved in miRNA transport and processing. RNA extracted from MVs and cells of origin was profiled for 365 known human mature miRNAs by real time PCR. Hierarchical clustering and similarity analysis of miRNAs showed 41 co-expressed miRNAs in MVs and cells. Some miRNAs were accumulated within MVs and absent in the cells after MV release; others were retained within the cells and not secreted in MVs. Gene ontology analysis of predicted and validated targets showed that the high expressed miRNAs in cells and MVs could be involved in multi-organ development, cell survival and differentiation. Few selected miRNAs shuttled by MVs were also associated with the immune system regulation. The highly expressed miRNAs in MVs were transferred to target cells after MV incorporation. Conclusions This study demonstrated that MVs contained ribonucleoproteins involved in the intracellular traffic of RNA and selected pattern of miRNAs, suggesting a dynamic regulation of RNA compartmentalization in MVs. The observation that MV-highly expressed miRNAs were transferred to target cells, rises the possibility that the biological effect of stem cells may, at least in part, depend on MV-shuttled miRNAs. Data generated from this study, stimulate further functional investigations on the predicted target genes and pathways involved in the biological effect of human adult stem cells.


Nephrology Dialysis Transplantation | 2011

Microvesicles derived from human adult mesenchymal stem cells protect against ischaemia–reperfusion-induced acute and chronic kidney injury

Stefano Gatti; Stefania Bruno; Maria Chiara Deregibus; Andrea Sordi; Vincenzo Cantaluppi; Ciro Tetta; Giovanni Camussi

BACKGROUND Several studies demonstrated that mesenchymal stem cells (MSCs) reverse acute kidney injury (AKI) by a paracrine mechanism rather than by MSC transdifferentiation. We recently demonstrated that microvesicles (MVs) released from MSCs may account for this paracrine mechanism by a horizontal transfer of messenger RNA and microRNA. METHODS MVs isolated from MSCs were injected intravenously in rats (30 μg/rat) immediately after monolateral nephrectomy and renal artery and vein occlusion for 45 min. To evaluate the MV effects on AKI induced by ischaemia-reperfusion injury (IRI), the animals were divided into different groups: normal rats (n = 4), sham-operated rats (n = 6), IRI rats (n = 6), IRI + MV rats (n = 6), and IRI + RNase-MV rats (n = 6), and all animals were sacrificed at Day 2 after the operation. To evaluate the chronic kidney damage consequent to IRI, the rats were divided into different groups: sham-operated rats (n = 6) and IRI rats (n = 6), IRI + MV rats (n = 6), and all animal were sacrificed 6 months after the operation. RESULTS We found that a single administration of MVs, immediately after IRI, protects rats from AKI by inhibiting apoptosis and stimulating tubular epithelial cell proliferation. The MVs also significantly reduced the impairment of renal function. Pretreatment of MVs with RNase to inactivate their RNA cargo abrogated these protective effects. Moreover, MVs by reducing the acute injury also protected from later chronic kidney disease. CONCLUSION MVs released from MSCs protect from AKI induced by ischaemia reperfusion injury and from subsequent chronic renal damage. This suggest that MVs could be exploited as a potential new therapeutic approach.


Stem Cells | 2006

Isolation and Characterization of a Stem Cell Population from Adult Human Liver

Maria Beatriz Herrera; Stefania Bruno; Stefano Buttiglieri; Ciro Tetta; Stefano Gatti; Maria Chiara Deregibus; Benedetta Bussolati; Giovanni Camussi

Several studies suggested the presence of stem cells in the adult normal human liver; however, a population with stem cell properties has not yet been isolated. The purpose of the present study was to identify and characterize progenitor cells in normal adult human liver. By stringent conditions of liver cell cultures, we isolated and characterized a population of human liver stem cells (HLSCs). HLSCs expressed the mesenchymal stem cell markers CD29, CD73, CD44, and CD90 but not the hematopoietic stem cell markers CD34, CD45, CD117, and CD133. HLSCs were also positive for vimentin and nestin, a stem cell marker. The absence of staining for cytokeratin‐19, CD117, and CD34 indicated that HLSCs were not oval stem cells. In addition, HLSCs expressed albumin, α‐fetoprotein, and in a small percentage of cells, cytokeratin‐8 and cytokeratin‐18, indicating a partial commitment to hepatic cells. HLSCs differentiated in mature hepatocytes when cultured in the presence of hepatocyte growth factor and fibroblast growth factor 4, as indicated by the expression of functional cytochrome P450, albumin, and urea production. Under this condition, HLSCs downregulated α‐fetoprotein and expressed cytokeratin‐8 and cytokeratin‐18. HLSCs were also able to undergo osteogenic and endothelial differentiation when cultured in the appropriated differentiation media, but they did not undergo lipogenic differentiation. Moreover, HLSCs differentiated in insulin‐producing islet‐like structures. In vivo, HLSCs contributed to regeneration of the liver parenchyma in severe‐combined immunodeficient mice. In conclusion, we here identified a pluripotent progenitor population in adult human liver that could provide a basis for cell therapy strategies.


PLOS ONE | 2012

Microvesicles Derived from Mesenchymal Stem Cells Enhance Survival in a Lethal Model of Acute Kidney Injury

Stefania Bruno; Cristina Grange; Federica Collino; Maria Chiara Deregibus; Vincenzo Cantaluppi; Luigi Biancone; Ciro Tetta; Giovanni Camussi

Several studies demonstrated that treatment with mesenchymal stem cells (MSCs) reduces cisplatin mortality in mice. Microvesicles (MVs) released from MSCs were previously shown to favor renal repair in non lethal toxic and ischemic acute renal injury (AKI). In the present study we investigated the effects of MSC-derived MVs in SCID mice survival in lethal cisplatin-induced AKI. Moreover, we evaluated in vitro the effect of MVs on cisplatin-induced apoptosis of human renal tubular epithelial cells and the molecular mechanisms involved. Two different regimens of MV injection were used. The single administration of MVs ameliorated renal function and morphology, and improved survival but did not prevent chronic tubular injury and persistent increase in BUN and creatinine. Multiple injections of MVs further decreased mortality and at day 21 surviving mice showed normal histology and renal function. The mechanism of protection was mainly ascribed to an anti-apoptotic effect of MVs. In vitro studies demonstrated that MVs up-regulated in cisplatin-treated human tubular epithelial cells anti-apoptotic genes, such as Bcl-xL, Bcl2 and BIRC8 and down-regulated genes that have a central role in the execution-phase of cell apoptosis such as Casp1, Casp8 and LTA. In conclusion, MVs released from MSCs were found to exert a pro-survival effect on renal cells in vitro and in vivo, suggesting that MVs may contribute to renal protection conferred by MSCs.


Kidney International | 2012

Microvesicles derived from endothelial progenitor cells protect the kidney from ischemia-reperfusion injury by microRNA-dependent reprogramming of resident renal cells

Vincenzo Cantaluppi; Stefano Gatti; Davide Medica; Federico Figliolini; Stefania Bruno; Maria Chiara Deregibus; Andrea Sordi; Luigi Biancone; Ciro Tetta; Giovanni Camussi

Endothelial progenitor cells are known to reverse acute kidney injury by paracrine mechanisms. We previously found that microvesicles released from these progenitor cells activate an angiogenic program in endothelial cells by horizontal mRNA transfer. Here, we tested whether these microvesicles prevent acute kidney injury in a rat model of ischemia-reperfusion injury. The RNA content of microvesicles was enriched in microRNAs (miRNAs) that modulate proliferation, angiogenesis, and apoptosis. After intravenous injection following ischemia-reperfusion, the microvesicles were localized within peritubular capillaries and tubular cells. This conferred functional and morphologic protection from acute kidney injury by enhanced tubular cell proliferation, reduced apoptosis, and leukocyte infiltration. Microvesicles also protected against progression of chronic kidney damage by inhibiting capillary rarefaction, glomerulosclerosis, and tubulointerstitial fibrosis. The renoprotective effect of microvesicles was lost after treatment with RNase, nonspecific miRNA depletion of microvesicles by Dicer knock-down in the progenitor cells, or depletion of pro-angiogenic miR-126 and miR-296 by transfection with specific miR-antagomirs. Thus, microvesicles derived from endothelial progenitor cells protect the kidney from ischemic acute injury by delivering their RNA content, the miRNA cargo of which contributes to reprogramming hypoxic resident renal cells to a regenerative program.


The FASEB Journal | 2003

Altered angiogenesis and survival in human tumor-derived endothelial cells

Benedetta Bussolati; Ilaria Deambrosis; Simona Russo; Maria Chiara Deregibus; Giovanni Camussi

Knowledge on the functional properties of tumor‐derived endothelial cells (TEC) can be relevant for the development of antiangiogenic therapeutic strategies. In the present study, we obtained and characterized endothelial cell lines from human renal carcinomas. TEC did not undergo senescence and showed constant expression of markers of endothelial activation and angiogenesis. In vitro, TEC, in contrast to normal endothelial cells, were resistant to apoptosis, proadhesive for renal carcinoma cells, and able to grow and organize in the absence of serum in persistent capillary‐like structures. In vivo, TEC were able to grow in immunodeficient mice and to form vascular structures connected with the circulation. At a molecular level, gene array analysis showed an increased expression of genes involved in survival and cell adhesion compared with expression in normal microvascular endothelial cells. Moreover, expression of angiopoietin‐1 and vascular endothelial growth factor (VEGF)‐D and the Akt survival pathway were up‐regulated. Inhibition of interaction of VEGFR‐2 or VEGFR‐3 with VEGF‐D but not of Tie‐2‐angiopoietin‐1 interaction with soluble receptors abrogated Akt activation and survival of TEC. These results indicate that at least some of the TEC within a tumor display abnormal characteristics in terms of survival and angiogenic properties and also indicate the presence of a functional autocrine pathway related to VEGF‐D.

Collaboration


Dive into the Maria Chiara Deregibus's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ciro Tetta

Fresenius Medical Care

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vincenzo Cantaluppi

University of Eastern Piedmont

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge