Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vincenzo Cantaluppi is active.

Publication


Featured researches published by Vincenzo Cantaluppi.


Kidney International | 2010

Exosomes/microvesicles as a mechanism of cell-to-cell communication

Giovanni Camussi; Maria Chiara Deregibus; Stefania Bruno; Vincenzo Cantaluppi; Luigi Biancone

Microvesicles (MVs) are circular fragments of membrane released from the endosomal compartment as exosomes or shed from the surface membranes of most cell types. An increasing body of evidence indicates that they play a pivotal role in cell-to-cell communication. Indeed, they may directly stimulate target cells by receptor-mediated interactions or may transfer from the cell of origin to various bioactive molecules including membrane receptors, proteins, mRNAs, microRNAs, and organelles. In this review we discuss the pleiotropic biologic effects of MVs that are relevant for communication among cells in physiological and pathological conditions. In particular, we discuss their potential involvement in inflammation, renal disease, and tumor progression, and the evidence supporting a bidirectional exchange of genetic information between stem and injured cells. The transfer of gene products from injured cells may explain stem cell functional and phenotypic changes without the need of transdifferentiation into tissue cells. On the other hand, transfer of gene products from stem cells may reprogram injured cells to repair damaged tissues.


Nephrology Dialysis Transplantation | 2011

Microvesicles derived from human adult mesenchymal stem cells protect against ischaemia–reperfusion-induced acute and chronic kidney injury

Stefano Gatti; Stefania Bruno; Maria Chiara Deregibus; Andrea Sordi; Vincenzo Cantaluppi; Ciro Tetta; Giovanni Camussi

BACKGROUND Several studies demonstrated that mesenchymal stem cells (MSCs) reverse acute kidney injury (AKI) by a paracrine mechanism rather than by MSC transdifferentiation. We recently demonstrated that microvesicles (MVs) released from MSCs may account for this paracrine mechanism by a horizontal transfer of messenger RNA and microRNA. METHODS MVs isolated from MSCs were injected intravenously in rats (30 μg/rat) immediately after monolateral nephrectomy and renal artery and vein occlusion for 45 min. To evaluate the MV effects on AKI induced by ischaemia-reperfusion injury (IRI), the animals were divided into different groups: normal rats (n = 4), sham-operated rats (n = 6), IRI rats (n = 6), IRI + MV rats (n = 6), and IRI + RNase-MV rats (n = 6), and all animals were sacrificed at Day 2 after the operation. To evaluate the chronic kidney damage consequent to IRI, the rats were divided into different groups: sham-operated rats (n = 6) and IRI rats (n = 6), IRI + MV rats (n = 6), and all animal were sacrificed 6 months after the operation. RESULTS We found that a single administration of MVs, immediately after IRI, protects rats from AKI by inhibiting apoptosis and stimulating tubular epithelial cell proliferation. The MVs also significantly reduced the impairment of renal function. Pretreatment of MVs with RNase to inactivate their RNA cargo abrogated these protective effects. Moreover, MVs by reducing the acute injury also protected from later chronic kidney disease. CONCLUSION MVs released from MSCs protect from AKI induced by ischaemia reperfusion injury and from subsequent chronic renal damage. This suggest that MVs could be exploited as a potential new therapeutic approach.


PLOS ONE | 2012

Microvesicles Derived from Mesenchymal Stem Cells Enhance Survival in a Lethal Model of Acute Kidney Injury

Stefania Bruno; Cristina Grange; Federica Collino; Maria Chiara Deregibus; Vincenzo Cantaluppi; Luigi Biancone; Ciro Tetta; Giovanni Camussi

Several studies demonstrated that treatment with mesenchymal stem cells (MSCs) reduces cisplatin mortality in mice. Microvesicles (MVs) released from MSCs were previously shown to favor renal repair in non lethal toxic and ischemic acute renal injury (AKI). In the present study we investigated the effects of MSC-derived MVs in SCID mice survival in lethal cisplatin-induced AKI. Moreover, we evaluated in vitro the effect of MVs on cisplatin-induced apoptosis of human renal tubular epithelial cells and the molecular mechanisms involved. Two different regimens of MV injection were used. The single administration of MVs ameliorated renal function and morphology, and improved survival but did not prevent chronic tubular injury and persistent increase in BUN and creatinine. Multiple injections of MVs further decreased mortality and at day 21 surviving mice showed normal histology and renal function. The mechanism of protection was mainly ascribed to an anti-apoptotic effect of MVs. In vitro studies demonstrated that MVs up-regulated in cisplatin-treated human tubular epithelial cells anti-apoptotic genes, such as Bcl-xL, Bcl2 and BIRC8 and down-regulated genes that have a central role in the execution-phase of cell apoptosis such as Casp1, Casp8 and LTA. In conclusion, MVs released from MSCs were found to exert a pro-survival effect on renal cells in vitro and in vivo, suggesting that MVs may contribute to renal protection conferred by MSCs.


Kidney International | 2012

Microvesicles derived from endothelial progenitor cells protect the kidney from ischemia-reperfusion injury by microRNA-dependent reprogramming of resident renal cells

Vincenzo Cantaluppi; Stefano Gatti; Davide Medica; Federico Figliolini; Stefania Bruno; Maria Chiara Deregibus; Andrea Sordi; Luigi Biancone; Ciro Tetta; Giovanni Camussi

Endothelial progenitor cells are known to reverse acute kidney injury by paracrine mechanisms. We previously found that microvesicles released from these progenitor cells activate an angiogenic program in endothelial cells by horizontal mRNA transfer. Here, we tested whether these microvesicles prevent acute kidney injury in a rat model of ischemia-reperfusion injury. The RNA content of microvesicles was enriched in microRNAs (miRNAs) that modulate proliferation, angiogenesis, and apoptosis. After intravenous injection following ischemia-reperfusion, the microvesicles were localized within peritubular capillaries and tubular cells. This conferred functional and morphologic protection from acute kidney injury by enhanced tubular cell proliferation, reduced apoptosis, and leukocyte infiltration. Microvesicles also protected against progression of chronic kidney damage by inhibiting capillary rarefaction, glomerulosclerosis, and tubulointerstitial fibrosis. The renoprotective effect of microvesicles was lost after treatment with RNase, nonspecific miRNA depletion of microvesicles by Dicer knock-down in the progenitor cells, or depletion of pro-angiogenic miR-126 and miR-296 by transfection with specific miR-antagomirs. Thus, microvesicles derived from endothelial progenitor cells protect the kidney from ischemic acute injury by delivering their RNA content, the miRNA cargo of which contributes to reprogramming hypoxic resident renal cells to a regenerative program.


Diabetes | 2008

OBESTATIN PROMOTES SURVIVAL OF PANCREATIC β-CELLS AND HUMAN ISLETS AND INDUCES EXPRESSION OF GENES INVOLVED IN THE REGULATION OF β-CELL MASS AND FUNCTION

Riccarda Granata; Fabio Settanni; Davide Gallo; Letizia Trovato; Luigi Biancone; Vincenzo Cantaluppi; Rita Nano; Marta Annunziata; Pietro Campiglia; Elisa Arnoletti; Corrado Ghè; Marco Volante; Mauro Papotti; Giampiero Muccioli; Ezio Ghigo

OBJECTIVE—Obestatin is a newly discovered peptide encoded by the ghrelin gene whose biological functions are poorly understood. We investigated obestatin effect on survival of β-cells and human pancreatic islets and the underlying signaling pathways. RESEARCH DESIGN AND METHODS—β-Cells and human islets were used to assess obestatin effect on cell proliferation, survival, apoptosis, intracellular signaling, and gene expression. RESULTS—Obestatin showed specific binding on HIT-T15 and INS-1E β-cells, bound to glucagon-like peptide-1 receptor (GLP-1R), and recognized ghrelin binding sites. Obestatin exerted proliferative, survival, and antiapoptotic effects under serum-deprived conditions and interferon-γ/tumor necrosis factor-α/interleukin-1β treatment, particularly at pharmacological concentrations. Ghrelin receptor antagonist [D-Lys3]-growth hormone releasing peptide-6 and anti-ghrelin antibody prevented obestatin-induced survival in β-cells and human islets. β-Cells and islet cells released obestatin, and addition of anti-obestatin antibody reduced their viability. Obestatin increased β-cell cAMP and activated extracellular signal–related kinase 1/2 (ERK1/2) and phosphatidylinositol 3-kinase (PI 3-kinase)/Akt; its antiapoptotic effect was blocked by inhibition of adenylyl cyclase/cAMP/protein kinase A (PKA), PI 3-kinase/Akt, and ERK1/2 signaling. Moreover, obestatin upregulated GLP-1R mRNA and insulin receptor substrate-2 (IRS-2) expression and phosphorylation. The GLP-1R antagonist exendin-(9-39) reduced obestatin effect on β-cell survival. In human islets, obestatin, whose immunoreactivity colocalized with that of ghrelin, promoted cell survival and blocked cytokine-induced apoptosis through cAMP increase and involvement of adenylyl cyclase/cAMP/PKA signaling. Moreover, obestatin 1) induced PI 3-kinase/Akt, ERK1/2, and also cAMP response element–binding protein phosphorylation; 2) stimulated insulin secretion and gene expression; and 3) upregulated GLP-1R, IRS-2, pancreatic and duodenal homeobox-1, and glucokinase mRNA. CONCLUSIONS—These results indicate that obestatin promotes β-cell and human islet cell survival and stimulates the expression of main regulatory β-cell genes, identifying a new role for this peptide within the endocrine pancreas.


Magnetic Resonance in Medicine | 2004

Improved route for the visualization of stem cells labeled with a Gd‐/Eu‐Chelate as dual (MRI and fluorescence) agent

Simonetta Geninatti Crich; Luigi Biancone; Vincenzo Cantaluppi; Debora Duò; Giovanna Esposito; Simona Russo; Giovanni Camussi; Silvio Aime

A simple labeling procedure of stem/progenitor cells based on the use of Gd‐HPDO3A and Eu‐HPDO3A, respectively, is described. The Gd‐chelate acts as T1‐agent for MRI visualization, whereas the corresponding Eu‐chelate acts as reporter in fluorescence microscopy. Owing to their substantial chemical equivalence, the two chelates are equally internalized in EPCs (endothelial progenitor cells), thus allowing their visualization by both techniques. The lanthanide chelates are entrapped in endosomic vesicles and the labeled cells retain biological activity with preservation of viability and pro‐angiogenesis capacity. Hyperintense spots in MR have been observed for Gd‐labeled EPCs injected under mice kidney capsule or grafted on a subcutaneous Matrigel plug up to 14 days after transplantation. Magn Reson Med 51:938–944, 2004.


International Journal of Immunopathology and Pharmacology | 2012

Endothelial progenitor cell-derived microvesicles improve neovascularization in a murine model of hindlimb ischemia.

Andrea Ranghino; Vincenzo Cantaluppi; Cristina Grange; L Vitillo; Fabrizio Fop; Luigi Biancone; Maria Chiara Deregibus; Ciro Tetta; Giuseppe Paolo Segoloni; Giovanni Camussi

Paracrine mediators released from endothelial progenitor cells (EPCs) have been implicated in neoangiogenesis following ischemia. Recently, we demonstrated that microvesicles (MVs) derived from EPCs are able to activate an angiogenic program in quiescent endothelial cells by a horizontal transfer of RNA. In this study we aim to investigate whether EPC-derived MVs are able to induce neoangiogenesis and to enhance recovery in a murine model of hindlimb ischemia. Hindlimb ischemia was induced in severe combined immunodeficient (SCID) mice by ligation and resection of the left femoral artery and mice were treated with EPC-derived MVs (MVs), RNase-inactivated MVs (RnaseMVs), fibroblast-derived MVs or vehicle alone as control (CTL). Since MVs contained the angiogenic miR-126 and miR-296, we evaluated whether microRNAs may account for the angiogenic activities by treating mice with MVs obtained from DICER-knock-down EPC (DICER-MVs). The limb perfusion evaluated by laserdoppler analysis demonstrated that MVs significantly enhanced perfusion in respect to CTL (0.50±0.08 vs 0.39±0.03, p < 0.05). After 7 days, immunohistochemical analyses on the gastrocnemius muscle of the ischemic hindlimb showed that MVs but not fibroblast-MVs significantly increased the capillary density in respect to CTL (MVs vs CTL: 24.7±10.3 vs 13.5±6, p < 0.0001) and (fibroblast-MVs vs CTL: 10.2±3.4 vs 13.5±6, ns); RNaseMVs and DICER-MVs significantly reduced the effect of MVs (RNaseMVs vs CTL: 15.7±4.1 vs 13.5±6, ns) (MVs vs DICER-MVs 24.7±10.3 vs 18.1±5.8, p < 0.05), suggesting a role of RNAs shuttled by MVs. Morphometric analysis confirmed that MVs enhanced limb perfusion and reduced injury. The results of the present study indicate that treatment with EPC-derived MVs improves neovascularization and favors regeneration in severe hindlimb ischemia induced in SCID mice. This suggests a possible use of EPCs-derived MVs for treatment of peripheral arterial disease.


Biochemical Society Transactions | 2013

Role of stem-cell-derived microvesicles in the paracrine action of stem cells

Giovanni Camussi; Maria Chiara Deregibus; Vincenzo Cantaluppi

The paracrine theory has recently changed the view of the biological action of stem cells and of the subsequent potential application of stem cells in regenerative medicine. Indeed, most of the beneficial effects of stem-cell-based therapy have been attributed to soluble factors released from stem cells. In this context, MVs (microvesicles) released as exosomes from the endosomal compartment, or as shedding vesicles from the cell surface, may play a relevant role in the intercellular communication between stem and injured cells. By transferring proteins, bioactive lipids, mRNA and microRNA, MVs act as vehicles of information that may lead to alteration of the phenotype of recipient cells. The exchange of information between stem cells and tissue-injured cells is reciprocal. The MV-mediated transfer of tissue-specific information from the injured cells to stem cells may reprogramme the latter to gain phenotypic and functional characteristics of the cell of origin. On the other hand, MVs released from stem cells may confer a stem-cell-like phenotype to injured cells, with the consequent activation of self-regenerative programmes. In fact, MVs released from stem cells retain several biological activities that are able to reproduce the beneficial effects of stem cells in a variety of experimental models.


Intensive Care Medicine | 2008

Polymyxin-B hemoperfusion inactivates circulating proapoptotic factors

Vincenzo Cantaluppi; Barbara Assenzio; Daniela Pasero; Giuseppe Mauriello Romanazzi; Alfonso Pacitti; Giacomo Lanfranco; Valeria Puntorieri; Erica Martin; Luciana Mascia; Gianpaola Monti; Giampaolo Casella; Giuseppe Paolo Segoloni; Giovanni Camussi; V. Marco Ranieri

ObjectiveTo test the hypothesis that extracorporeal therapy with polymyxin B (PMX-B) may prevent Gram-negative sepsis-induced acute renal failure (ARF) by reducing the activity of proapoptotic circulating factors.SettingMedical-Surgical Intensive Care Units.Patients and interventionsSixteen patients with Gram-negative sepsis were randomized to receive standard care (Surviving Sepsis Campaign guidelines) or standard care plus extracorporeal therapy with PMX-B.Measurements and resultsCell viability, apoptosis, polarity, morphogenesis, and epithelial integrity were evaluated in cultured tubular cells and glomerular podocytes incubated with plasma from patients of both groups. Renal function was evaluated as SOFA and RIFLE scores, proteinuria, and tubular enzymes. A significant decrease of plasma-induced proapoptotic activity was observed after PMX-B treatment on cultured renal cells. SOFA and RIFLE scores, proteinuria, and urine tubular enzymes were all significantly reduced after PMX-B treatment. Loss of plasma-induced polarity and permeability of cell cultures was abrogated with the plasma of patients treated with PMX-B. These results were associated to a preserved expression of molecules crucial for tubular and glomerular functional integrity.ConclusionsExtracorporeal therapy with PMX-B reduces the proapoptotic activity of the plasma of septic patients on cultured renal cells. These data confirm the role of apoptosis in the development of sepsis-related ARF.


Critical Care | 2008

Circulating plasma factors induce tubular and glomerular alterations in septic burns patients

Filippo Mariano; Vincenzo Cantaluppi; Maurizio Stella; Giuseppe Mauriello Romanazzi; Barbara Assenzio; Monica Cairo; Luigi Biancone; Giorgio Triolo; V. Marco Ranieri; Giovanni Camussi

BackgroundSevere burn is a systemic illness often complicated by sepsis. Kidney is one of the organs invariably affected, and proteinuria is a constant clinical finding. We studied the relationships between proteinuria and patient outcome, severity of renal dysfunction and systemic inflammatory state in burns patients who developed sepsis-associated acute renal failure (ARF). We then tested the hypothesis that plasma in these patients induces apoptosis and functional alterations that could account for proteinuria and severity of renal dysfunction in tubular cells and podocytes.MethodsWe studied the correlation between proteinuria and indexes of systemic inflammation or renal function prospectively in 19 severe burns patients with septic shock and ARF, and we evaluated the effect of plasma on apoptosis, polarity and functional alterations in cultured human tubular cells and podocytes. As controls, we collected plasma from 10 burns patients with septic shock but without ARF, 10 burns patients with septic shock and ARF, 10 non-burns patients with septic shock without ARF, 10 chronic uremic patients and 10 healthy volunteers.ResultsSeptic burns patients with ARF presented a severe proteinuria that correlated to outcome, glomerular (creatinine/urea clearance) and tubular (fractional excretion of sodium and potassium) functional impairment and systemic inflammation (white blood cell (WBC) and platelet counts). Plasma from these patients induced a pro-apoptotic effect in tubular cells and podocytes that correlated with the extent of proteinuria. Plasma-induced apoptosis was significantly higher in septic severe burns patients with ARF with respect to those without ARF or with septic shock without burns. Moreover, plasma from septic burns patients induced an alteration of polarity in tubular cells, as well as reduced expression of the tight junction protein ZO-1 and of the endocytic receptor megalin. In podocytes, plasma from septic burns patients increased permeability to albumin and decreased the expression of the slit diaphragm protein nephrin.ConclusionPlasma from burns patients with sepsis-associated ARF contains factors that affect the function and survival of tubular cells and podocytes. These factors are likely to be involved in the pathogenesis of acute tubular injury and proteinuria, which is a negative prognostic factor and an index of renal involvement in the systemic inflammatory reaction.

Collaboration


Dive into the Vincenzo Cantaluppi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge