Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria-Clemencia Hernandez is active.

Publication


Featured researches published by Maria-Clemencia Hernandez.


The Journal of Neuroscience | 2013

Reducing GABAA α5 Receptor-Mediated Inhibition Rescues Functional and Neuromorphological Deficits in a Mouse Model of Down Syndrome

Carmen Martínez-Cué; Paula Martínez; Noemí Rueda; Rebeca Vidal; Susana Truchuelo García; Verónica Vidal; Andrea Corrales; Juan A. Montero; Angel Pazos; Jesús Flórez; Rodolfo Gasser; Andrew William Thomas; Michael Honer; Frédéric Knoflach; José Luis Trejo; Joseph G. Wettstein; Maria-Clemencia Hernandez

Down syndrome (DS) is associated with neurological complications, including cognitive deficits that lead to impairment in intellectual functioning. Increased GABA-mediated inhibition has been proposed as a mechanism underlying deficient cognition in the Ts65Dn (TS) mouse model of DS. We show that chronic treatment of these mice with RO4938581 (3-bromo-10-(difluoromethyl)-9H-benzo[f]imidazo[1,5-a][1,2,4]triazolo[1,5-d][1,4]diazepine), a selective GABAA α5 negative allosteric modulator (NAM), rescued their deficits in spatial learning and memory, hippocampal synaptic plasticity, and adult neurogenesis. We also show that RO4938581 normalized the high density of GABAergic synapse markers in the molecular layer of the hippocampus of TS mice. In addition, RO4938581 treatment suppressed the hyperactivity observed in TS mice without inducing anxiety or altering their motor abilities. These data demonstrate that reducing GABAergic inhibition with RO4938581 can reverse functional and neuromorphological deficits of TS mice by facilitating brain plasticity and support the potential therapeutic use of selective GABAA α5 NAMs to treat cognitive dysfunction in DS.


Bioorganic & Medicinal Chemistry Letters | 2009

The discovery and unique pharmacological profile of RO4938581 and RO4882224 as potent and selective GABAA α5 inverse agonists for the treatment of cognitive dysfunction

Henner Knust; Guido Achermann; Theresa M. Ballard; Bernd Buettelmann; Rodolfo Gasser; Holger Fischer; Maria-Clemencia Hernandez; Frédéric Knoflach; Andreas Koblet; Heinz Stadler; Andrew William Thomas; Gerhard Trube; Pius Waldmeier

Lead optimisation of the imidazo[1,5-a][1,2,4]-triazolo[1,5-d][1,4]benzodiazepine class led to the identification of two clinical leads [RO4882224 (11) and RO4938581 (44)] functioning as novel potent and selective GABAA alpha5 inverse agonists. The unique pharmacological profiles and optimal pharmacokinetic profiles resulted in in vivo activity in selected cognition models.


PLOS ONE | 2012

Simultaneous Optical Recording in Multiple Cells by Digital Holographic Microscopy of Chloride Current Associated to Activation of the Ligand-Gated Chloride Channel GABAA Receptor

Pascal Jourdain; Daniel Boss; Benjamin Rappaz; Corinne Moratal; Maria-Clemencia Hernandez; Christian Depeursinge; Pierre J. Magistretti; Pierre Marquet

Chloride channels represent a group of targets for major clinical indications. However, molecular screening for chloride channel modulators has proven to be difficult and time-consuming as approaches essentially rely on the use of fluorescent dyes or invasive patch-clamp techniques which do not lend themselves to the screening of large sets of compounds. To address this problem, we have developed a non-invasive optical method, based on digital holographic microcopy (DHM), allowing monitoring of ion channel activity without using any electrode or fluorescent dye. To illustrate this approach, GABAA mediated chloride currents have been monitored with DHM. Practically, we show that DHM can non-invasively provide the quantitative determination of transmembrane chloride fluxes mediated by the activation of chloride channels associated with GABAA receptors. Indeed through an original algorithm, chloride currents elicited by application of appropriate agonists of the GABAA receptor can be derived from the quantitative phase signal recorded with DHM. Finally, chloride currents can be determined and pharmacologically characterized non-invasively simultaneously on a large cellular sampling by DHM.


Bioorganic & Medicinal Chemistry Letters | 2009

Discovery of the imidazo[1,5-a][1,2,4]-triazolo[1,5-d][1,4]benzodiazepine scaffold as a novel, potent and selective GABAA α5 inverse agonist series

Guido Achermann; Theresa M. Ballard; Francesca Blasco; Pierre-Emmanuel Broutin; Bernd Büttelmann; Holger Fischer; Martin Graf; Maria-Clemencia Hernandez; Peter Hilty; Frédéric Knoflach; Andreas Koblet; Henner Knust; Anke Kurt; James R. Martin; Raffaello Masciadri; Richard Hugh Philip Porter; Heinz Stadler; Andrew William Thomas; Gerhard Trube; Jürgen Wichmann

Through iterative design cycles we have discovered a number of novel new classes where the imidazo[1,5-a][1,2,4]-triazolo[1,5-d][1,4]benzodiazepine was deemed the most promising GABA(A) alpha5 inverse agonist class with potential for cognitive enhancement. This class combines a modest subtype binding selectivity with inverse agonism and has the most favourable molecular properties for further lead optimisation towards a central nervous system (CNS) acting medicine.


Biochemical Pharmacology | 2016

GABAA receptor-mediated neurotransmission: Not so simple after all

Frédéric Knoflach; Maria-Clemencia Hernandez; Daniel Bertrand

GABAA receptors are ligand-gated ion channels that form a fundamental component of inhibitory neurotransmission in the central and peripheral nervous systems. However, since the initial recordings of inhibitory electrical activity of neurons in response to GABA, these receptors have been found to play a more complex role and can, under some circumstances, function in an excitatory manner. This has been demonstrated via electrophysiological recordings conducted in both mature and developing neurons from different brain regions, as well as in various subcellular locations such as dendritic and axonal membranes. The balance between the inhibitory and excitatory effects mediated by GABAA receptor activation depends not only on multiple factors that govern the equilibrium of the transmembrane chloride gradient, but also on bicarbonate concentration. Moreover, electrophysiological and fluorescence measurements have revealed that a spatial distribution of the chloride gradient exists within neurons, which locally influences the effects mediated by GABAA receptor activation. In recent years, it has also become apparent that intra-neuronal chloride concentration is partially regulated by cation-chloride co-transporters (CCCs), in particular NKCC1 and KCC2. The aim of the present commentary is to discuss, in light of the latest findings, potential implications of the tight spatial and temporal regulation of chloride equilibrium in health and disease, as well as its relevance for the therapeutic effects of molecules acting at GABAA receptors.


Bioorganic & Medicinal Chemistry Letters | 2009

Imidazo[1,5-a][1,2,4]-triazolo[1,5-d][1,4]benzodiazepines as potent and highly selective GABAA α5 inverse agonists with potential for the treatment of cognitive dysfunction

Bernd Buettelmann; Theresa M. Ballard; Rodolfo Gasser; Holger Fischer; Maria-Clemencia Hernandez; Frédéric Knoflach; Henner Knust; Heinz Stadler; Andrew William Thomas; Gerhard Trube

In a search for GABAA alpha5 ligands that combine high subtype binding selectivity with a marked inverse agonism imidazo[1,5-a][1,2,4]-triazolo[1,5-d][1,4]benzodiazepines were identified as a promising class. A short tandem reaction allowed rapid access to this chemical series, thereby facilitating rapid SAR generation which guided the optimization process. Two compounds (10e and 11f) were found to be active in an in vivo paradigm for cognitive improvement.


Gene | 1998

The mouse Id2 and Id4 genes: structural organization and chromosomal localization

Akio Mantani; Maria-Clemencia Hernandez; Wen-Lin Kuo; Mark A. Israel

The Id proteins belong to a family of nuclear HLH proteins lacking a basic region and thought to function as dominant-negative regulators of bHLH proteins during cell growth and differentiation. In this paper, we report the genomic organization of the mouse Id2 and Id4 genes. These genes each span approximately 3 kb of the mouse genome and are each organized as three exons with recognizable splice donor and acceptor consensus sequences. Their genomic organization is very similar, consistent with their having evolved from a common, ancestral Id-like gene. Using FISH analysis, we have localized the mouse Id2 and Id4 genes to mouse chromosome 12 and 13, respectively.


British Journal of Pharmacology | 2011

Characterization of RO4583298 as a novel potent, dual antagonist with in vivo activity at tachykinin NK1 and NK3 receptors

Parichehr Malherbe; Frédéric Knoflach; Maria-Clemencia Hernandez; Torsten Hoffmann; Patrick Schnider; Richard Hugh Philip Porter; Joseph G. Wettstein; Theresa M. Ballard; Will Spooren; Lucinda Steward

BACKGROUND AND PURPOSE Clinical results of osanetant and talnetant (selective‐NK3 antagonists) indicate that blocking the NK3 receptor could be beneficial for the treatment of schizophrenia. The objective of this study was to characterize the in vitro and in vivo properties of a novel dual NK1/NK3 antagonist, RO4583298 (2‐phenyl‐N‐(pyridin‐3‐yl)‐N‐methylisobutyramide derivative).


American Journal of Medical Genetics Part A | 2017

Pharmacological interventions to improve cognition and adaptive functioning in Down syndrome: Strides to date

Sarah J. Hart; Jeannie Visootsak; Paul Tamburri; Patrick Phuong; Nicole Bäumer; Maria-Clemencia Hernandez; Brian G. Skotko; Cesar Ochoa-Lubinoff; Xavier Liogier d'Ardhuy; Priya S. Kishnani; Gail A. Spiridigliozzi

Although an increasing number of clinical trials have been developed for cognition in Down syndrome, there has been limited success to date in identifying effective interventions. This review describes the progression from pre‐clinical studies with mouse models to human clinical trials research using pharmacological interventions to improve cognition and adaptive functioning in Down syndrome. We also provide considerations for investigators when conducting human clinical trials and describe strategies for the pharmaceutical industry to advance the field in drug discovery for Down syndrome. Future research focusing on earlier pharmaceutical interventions, development of appropriate outcome measures, and greater collaboration between industry, academia, advocacy, and regulatory groups will be important for addressing limitations from prior studies and developing potential effective interventions for cognition in Down syndrome.


Molecular Neurobiology | 2018

Decreasing the Expression of GABAA α5 Subunit-Containing Receptors Partially Improves Cognitive, Electrophysiological, and Morphological Hippocampal Defects in the Ts65Dn Model of Down Syndrome

Verónica Vidal; Susana García-Cerro; Paula F. Martinez; Andrea Corrales; Sara Lantigua; Rebeca Vidal; Noemí Rueda; Laurence Ozmen; Maria-Clemencia Hernandez; Carmen Martínez-Cué

Trisomy 21 or Down syndrome (DS) is the most common cause of intellectual disability of a genetic origin. The Ts65Dn (TS) mouse, which is the most commonly used and best-characterized mouse model of DS, displays many of the cognitive, neuromorphological, and biochemical anomalies that are found in the human condition. One of the mechanisms that have been proposed to be responsible for the cognitive deficits in this mouse model is impaired GABA-mediated inhibition. Because of the well-known modulatory role of GABAA α5 subunit-containing receptors in cognitive processes, these receptors are considered to be potential targets for improving the intellectual disability in DS. The chronic administration of GABAA α5-negative allosteric modulators has been shown to be procognitive without anxiogenic or proconvulsant side effects. In the present study, we use a genetic approach to evaluate the contribution of GABAA α5 subunit-containing receptors to the cognitive, electrophysiological, and neuromorphological deficits in TS mice. We show that reducing the expression of GABAA α5 receptors by deleting one or two copies of the Gabra5 gene in TS mice partially ameliorated the cognitive impairments, improved long-term potentiation, enhanced neural differentiation and maturation, and normalized the density of the GABAergic synapse markers. Reducing the gene dosage of Gabra5 in TS mice did not induce motor alterations and anxiety or affect the viability of the mice. Our results provide further evidence of the role of GABAA α5 receptor-mediated inhibition in cognitive impairment in the TS mouse model of DS.

Collaboration


Dive into the Maria-Clemencia Hernandez's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge