Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Theresa M. Ballard is active.

Publication


Featured researches published by Theresa M. Ballard.


Journal of Pharmacology and Experimental Therapeutics | 2005

Fenobam: A Clinically Validated Nonbenzodiazepine Anxiolytic Is a Potent, Selective, and Noncompetitive mGlu5 Receptor Antagonist with Inverse Agonist Activity

Richard Hugh Philip Porter; Georg Jaeschke; Will Spooren; Theresa M. Ballard; Bernd Büttelmann; Sabine Kolczewski; Jens-Uwe Peters; Eric Prinssen; Jürgen Wichmann; Eric Vieira; Andreas Mühlemann; Silvia Gatti; Vincent Mutel; Pari Malherbe

Fenobam [N-(3-chlorophenyl)-N′-(4,5-dihydro-1-methyl-4-oxo-1H-imidazole-2-yl)urea] is an atypical anxiolytic agent with unknown molecular target that has previously been demonstrated both in rodents and human to exert anxiolytic activity. Here, we report that fenobam is a selective and potent metabotropic glutamate (mGlu)5 receptor antagonist acting at an allosteric modulatory site shared with 2-methyl-6-phenylethynyl-pyridine (MPEP), the protypical selective mGlu5 receptor antagonist. Fenobam inhibited quisqualate-evoked intracellular calcium response mediated by human mGlu5 receptor with IC50 = 58 ± 2 nM. It acted in a noncompetitive manner, similar to MPEP and demonstrated inverse agonist properties, blocking 66% of the mGlu5 receptor basal activity (in an over expressed cell line) with an IC50 = 84 ± 13 nM. [3H]Fenobam bound to rat and human recombinant receptors with Kd values of 54 ± 6 and 31 ± 4 nM, respectively. MPEP inhibited [3H]fenobam binding to human mGlu5 receptors with a Ki value of 6.7 ± 0.7 nM, indicating a common binding site shared by both allosteric antagonists. Fenobam exhibits anxiolytic activity in the stress-induced hyperthermia model, Vogel conflict test, Geller-Seifter conflict test, and conditioned emotional response with a minimum effective dose of 10 to 30 mg/kg p.o. Furthermore, fenobam is devoid of GABAergic activity, confirming previous reports that fenobam acts by a mechanism distinct from benzodiazepines. The non-GABAergic activity of fenobam, coupled with its robust anxiolytic activity and reported efficacy in human in a double blind placebo-controlled trial, supports the potential of developing mGlu5 receptor antagonists with an improved therapeutic window over benzodiazepines as novel anxiolytic agents.


Neuropharmacology | 2004

Pharmacological manipulation of mGlu2 receptors influences cognitive performance in the rodent

Guy A. Higgins; Theresa M. Ballard; James N.C. Kew; J. Grayson Richards; John A. Kemp; Geo Adam; Thomas Johannes Woltering; Shigetada Nakanishi; Vincent Mutel

Atrophy of the medial temporal lobes, including the glutamatergic cortical-hippocampal circuitry, is an early event in Alzheimers disease (AD) and probably contributes to the characteristic short-term mnemonic decline. Pharmacological strategies directly targeted to ameliorating this functional decline may represent a novel approach for the symptomatic treatment of AD. Presynaptic group II metabotropic glutamate receptors (i.e. mGlu2 and mGlu3) exert a powerful modulatory influence on the function of these pathways, in particular the perforant pathway. Using a combination of mGlu2 receptor knockout mice and the group II agonist LY354740, we show that activation of mGlu2 receptors produces a cognitive impairment, i.e. a delay-dependent deficit in delayed matching and non-matching to position, and impaired spatial learning in a Morris water maze. Conversely, a group II antagonist, LY341495, improved acquisition of spatial learning. LY354740 potently reduced field excitatory postsynaptic potentials in hippocampal slices from wild type but not mGlu2 receptor knockout mice. Taken together, these results suggest that activation of mGlu2 receptors evokes a powerful inhibitory effect on hippocampal synaptic transmission and mGlu2 agonists produce a cognitive deficit consistent with this change. Conversely, mGlu2 receptor antagonists may improve certain aspects of cognition and thus represent a novel approach for the symptomatic treatment of AD.


Neurobiology of Aging | 2007

Age-dependent cognitive decline and amygdala pathology in α-synuclein transgenic mice

Christian Freichel; Manuela Neumann; Theresa M. Ballard; Veronika Müller; Marie Woolley; Laurence Ozmen; Edilio Borroni; Hans A. Kretzschmar; Christian Haass; Will Spooren; Philipp J. Kahle

Abstract Intraneuronal α-synuclein (αSYN) inclusions constitute the hallmark lesions of a number of neurodegenerative diseases, including Parkinsons disease and dementia with Lewy bodies. In a transgenic mouse model expressing mutant [A30P]αSYN under control of the pan-neuronal Thy1 promoter, motor impairment became significant beyond 17 months of age. Cognitive performance was measured in the Morris water maze and upon fear conditioning. At 4 months of age, transgenic mice performed like controls. However, performance in these tasks was significantly impaired in (Thy1)-h[A30P]αSYN mice at 12 months of age. After completion of the cognition tests, mice were sacrificed and the regional distribution of neuropathology was examined. In contrast to 4 months old animals, 12 months old transgenic mice showed α-synucleinopathy in several brain regions, including the central nucleus of the amygdala, which is involved in cognitive behavior of mice, and is susceptible to αSYN pathology in human patients. Thus, age-dependent fibrillization of αSYN in specific cortical regions concomitant with cognitive decline may reflect dementia with Lewy bodies in a transgenic mouse model.


Pharmacology, Biochemistry and Behavior | 2002

Influence of the 5-HT2C receptor antagonist, SB-242084, in tests of anxiety

James R. Martin; Theresa M. Ballard; Guy A. Higgins

The 5-HT2C antagonist SB-242084 was examined in various anxiety tests at doses based on reversal of mCPP-induced hypoactivity (0.1--3 mg/kg ip). In the elevated plus-maze task, SB-242084 exhibited signs of anxiolysis (time spent, distance travelled, and entries into open arms), but this was potentially confounded by its general increase of locomotion; alprazolam selectively affected open-arm parameters. In a Geller--Seifter conflict test, SB-242084 produced a modest, nonsignificant increase in punished responding compared to the significant effect produced by diazepam. None of the treatments significantly affected unpunished responding. In the conditioned emotional response (CER) test, SB-242084 produced an increase in the suppression ratio (SR, smaller than diazepam). Since this 5-HT2C antagonist also increased lever pressing, an additional test was conducted with amphetamine that stimulated lever pressing but, nonetheless, failed to produce any change in SR. In the fear-potentiated startle task, SB-242084 was inactive in comparison to a significant effect of diazepam. The previously described reduction of schedule-induced polydipsia by fluoxetine and 5-HT2C receptor agonist Ro60-0175 was attenuated by SB-242084 pretreatment, however, the latter compound exhibited a potent increase in polydipsia when given alone. The present results demonstrate an anxiolytic potential of SB-242084, as well as an intrinsic response-enhancing property, however, both of these effects are task dependent.


Pharmacology, Biochemistry and Behavior | 2011

Drug targets for cognitive enhancement in neuropsychiatric disorders

Tanya L. Wallace; Theresa M. Ballard; Bruno Pouzet; Wim J. Riedel; Joseph G. Wettstein

The investigation of novel drug targets for treating cognitive impairments associated with neurological and psychiatric disorders remains a primary focus of study in central nervous system (CNS) research. Many promising new therapies are progressing through preclinical and clinical development, and offer the potential of improved treatment options for neurodegenerative diseases such as Alzheimers disease (AD) as well as other disorders that have not been particularly well treated to date like the cognitive impairments associated with schizophrenia (CIAS). Among targets under investigation, cholinergic receptors have received much attention with several nicotinic agonists (α7 and α4β2) actively in clinical trials for the treatment of AD, CIAS and attention deficit hyperactivity disorder (ADHD). Both glutamatergic and serotonergic (5-HT) agonists and antagonists have profound effects on neurotransmission and improve cognitive function in preclinical experiments with animals; some of these compounds are now in proof-of-concept studies in humans. Several histamine H3 receptor antagonists are in clinical development not only for cognitive enhancement, but also for the treatment of narcolepsy and cognitive deficits due to sleep deprivation because of their expression in brain sleep centers. Compounds that dampen inhibitory tone (e.g., GABA(A) α5 inverse agonists) or elevate excitatory tone (e.g., glycine transporter inhibitors) offer novel approaches for treating diseases such as schizophrenia, AD and Down syndrome. In addition to cell surface receptors, intracellular drug targets such as the phosphodiesterases (PDEs) are known to impact signaling pathways that affect long-term memory formation and working memory. Overall, there is a genuine need to treat cognitive deficits associated with many neuropsychiatric conditions as well as an increasingly aging population.


Hippocampus | 2009

Hippocampal-dependent spatial memory functions might be lateralized in rats: An approach combining gene expression profiling and reversible inactivation.

Sandra Klur; Christophe Muller; Anne Pereira de Vasconcelos; Theresa M. Ballard; Joëlle Lopez; Rodrigue Galani; Ulrich Certa; Jean-Christophe Cassel

The hippocampus is involved in spatial memory processes, as established in a variety of species such as birds and mammals including humans. In humans, some hippocampal‐dependent memory functions may be lateralized, the right hippocampus being predominantly involved in spatial navigation. In rodents, the question of possible lateralization remains open. Therefore, we first microdissected the CA1 subregion of the left and right dorsal hippocampi for analysis of mRNA expression using microarrays in rats having learnt a reference memory task in the Morris water‐maze. Relative to untrained controls, 623 genes were differentially expressed in the right hippocampus, against only 74 in the left hippocampus, in the rats that had learnt the hidden platform location. Thus, in the right hippocampus, 299 genes were induced, 324 were repressed, and about half of them participate in signaling and transport, metabolism, and nervous system functions. In addition, most differentially expressed genes associated with spatial learning have been previously related to synaptic plasticity and memory. We then subjected rats to unilateral (left or right) or bilateral reversible functional inactivations in the dorsal hippocampus; lidocaine was infused either before each acquisition session or before retrieval of a reference spatial memory in the Morris water maze. We found that after drug‐free acquisition, right or bilateral lidocaine inactivation (vs. left, or bilateral phosphate buffered saline (PBS) infusions) of the dorsal hippocampus just before a delayed (24 h) probe trial impaired performance. Conversely, left or bilateral hippocampus inactivation (vs. right, or bilateral PBS infusions) before each acquisition session weakened performance during a delayed, drug‐free probe trial. Our data confirm a functional association between transcriptional activity within the dorsal hippocampus and spatial memory in the rat. Further, they suggest that there could be a leftward bias of hippocampal functions in engram formation or information transfer, and a rightward bias in spatial memory storage/retrieval processes.


Neuropharmacology | 2001

Influence of the selective ORL1 receptor agonist, Ro64-6198, on rodent neurological function

Guy A. Higgins; A. J. Grottick; Theresa M. Ballard; J.G Richards; J Messer; Hiroshi Takeshima; Meike Pauly-Evers; F Jenck; Geo Adam; Jürgen Wichmann

Identification of synthetic agonists and antagonists at orphan receptors represents an important step for understanding their physiological function and therapeutic potential. Accordingly, we have recently described a non-peptide agonist at the opioid receptor like (ORL1) receptor (1S,3aS)-8-(2,3,3a,4,5,6-hexahydro-1H-phenalen-1-yl)-1-phenyl-1,3,8-triazaspiro[4.5]decan-4-one (Ro64-6198; Jenck et al., PNAS 94 (2000) 4938; Wichmann et al., Eur. J. Med. Chem. 35 (2000) 839). We have investigated the effects of this compound in various tests of rodent neurological function, utilising ORL1 knockout mice to examine the pharmacological specificity of Ro64-6198. In male C57BL/6J mice, effects on balance and motor co-ordination were detected following low doses (0.3-1mg/kg IP) of Ro64-6198. At higher doses (1-3mg/kg IP), effects on swim behaviour and hypothermia was observed. At 10mg/kg, each effect became more profound and a severe neurological disturbance appeared, including loss of righting reflex. These effects of Ro64-6198 (10mg/kg IP) were absent in ORL1 receptor knockout mice. In male, hooded Lister rats, Ro64-6198 (6-10mg/kg IP), produced some disturbance of neurological function, including hypoactivity, rotarod performance, grip strength and mild hypothermia. An impairment of food responding under a variable interval (VI) 20s schedule of reinforcement was noted at 3mg/kg. These results confirm Ro64-6198 to be a highly selective pharmacological tool to investigate ORL1 receptor function in vivo and, furthermore, that activation of this receptor is accompanied by a variety of effects on neurological function.


European Journal of Pharmacology | 2001

Inhibition of shock-induced foot tapping behaviour in the gerbil by a tachykinin NK1 receptor antagonist.

Theresa M. Ballard; Stefanie Sänger; Guy A. Higgins

The selective tachykinin NK1 receptor antagonist, 2-(R)-(1-(R)-3,5-Bis(trifluoromethyl)phenylethoxy)-3-(S)-(4-fluoro)phenyl-4-(3-oxo-1,2,4-triazol-5-yl)methylmorpholine (MK-869), has been recently described as a novel therapeutic approach for anxiety/depression. A frequently used model to establish the central nervous system (CNS) activity of tachykinin NK1 receptor antagonists is the inhibition of NK1 agonist-induced foot tapping in gerbils. In the present study, we demonstrate that foot tapping can also be induced in most, but not all, gerbils by footshock and associated cues. MK-869 (0.3-3 mg/kg, i.p.) dose-dependently blocked this foot tapping response. This effect was further shown to be due to selective NK1 receptor blockade, since (2S,3S)-cis-3(2-methoxybenzylamino)-2-phenylpiperidine (CP-99,994; 3 mg/kg, i.p.) inhibited foot tapping, whereas its less active enantiomer (2R,3R)-cis-3(2-methoxybenzylamino)-2-phenylpiperidine (CP-100,263; 3 mg/kg, i.p.) had no effect. Diazepam (1-10 mg/kg, i.p.) also inhibited foot tapping, whereas fluoxetine (10-30 mg/kg, i.p.) markedly increased this behaviour. The present data support the view that foot tapping in the gerbil is a behavioural response to an aversive stimulus, and is robustly inhibited by two NK1 receptor antagonists. The data support a role for tachykinin NK1 receptor antagonists as novel anxiolytic/antidepressants.


Neuropharmacology | 2006

Enhancing effects of nicotine and impairing effects of scopolamine on distinct aspects of performance in computerized attention and working memory tasks in marmoset monkeys

Simona Spinelli; Theresa M. Ballard; Joram Feldon; Guy A. Higgins; Christopher R. Pryce

With the CAmbridge Neuropsychological Test Automated Battery (CANTAB), computerized neuropsychological tasks can be presented on a touch-sensitive computer screen, and this system has been used to assess cognitive processes in neuropsychiatric patients, healthy volunteers, and species of non-human primate, primarily the rhesus macaque and common marmoset. Recently, we reported that the common marmoset, a small-bodied primate, can be trained to a high and stable level of performance on the CANTAB five-choice serial reaction time (5-CSRT) task of attention, and a novel task of working memory, the concurrent delayed match-to-position (CDMP) task. Here, in order to increase understanding of the specific cognitive demands of these tasks and the importance of acetylcholine to their performance, the effects of systemic delivery of the muscarinic receptor antagonist scopolamine and the nicotinic receptor agonist nicotine were studied. In the 5-CSRT task, nicotine enhanced performance in terms of increased sustained attention, whilst scopolamine led to increased omissions despite a high level of orientation to the correct stimulus location. In the CDMP task, scopolamine impaired performance at two stages of the task that differ moderately in terms of memory retention load but both of which are likely to require working memory, including interference-coping, abilities. Nicotine tended to enhance performance at the long-delay stage specifically but only against a background of relatively low baseline performance. These data are consistent with a dissociation of the roles of muscarinic and nicotinic cholinergic receptors in the regulation of both sustained attention and working memory in primates.


Neurobiology of Disease | 2010

Phosphorylation of Tau at S422 is enhanced by Aβ in TauPS2APP triple transgenic mice

Fiona Grueninger; Bernd Bohrmann; Christian Czech; Theresa M. Ballard; Johann R. Frey; Claudia Weidensteiner; Markus von Kienlin; Laurence Ozmen

Amyloid beta peptides and microtubule-associated protein Tau are misfolded and form aggregates in brains of Alzheimers disease patients. To examine their specific roles in the pathogenesis of Alzheimers disease and their relevance in neurodegenerative processes, we have created TauPS2APP triple transgenic mice that express human mutated Amyloid Precursor Protein, presenilin 2 and Tau. We present a cross-sectional analysis of these mice at 4, 8, 12 and 16 months of age. By comparing with single transgenic Tau mice, we demonstrate that accumulation of Abeta in TauPS2APP triple transgenic mice impacts on Tau pathology by increasing the phosphorylation of Tau at serine 422, as determined by a novel immunodetection method that is able to reliably measure phospho-Tau species in transgenic mouse brains. The TauPS2APP triple transgenic mouse model will be very useful for studying the effect of new therapeutic paradigms on amyloid deposition and downstream neurofibrillary tangle development.

Collaboration


Dive into the Theresa M. Ballard's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge