Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria Concistrè is active.

Publication


Featured researches published by Maria Concistrè.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Quantum rotation of ortho and para-water encapsulated in a fullerene cage

C. Beduz; Marina Carravetta; Judy Y.-C. Chen; Maria Concistrè; Mark Denning; Michael Frunzi; A.J. Horsewill; Ole G. Johannessen; Ronald G. Lawler; Xuegong Lei; Malcolm H. Levitt; Yongjun Li; Salvatore Mamone; Yasujiro Murata; Urmas Nagel; Tomoko Nishida; Jacques Ollivier; S. Rols; Toomas Room; Riddhiman Sarkar; Nicholas J. Turro; Y. Yang

Inelastic neutron scattering, far-infrared spectroscopy, and cryogenic nuclear magnetic resonance are used to investigate the quantized rotation and ortho–para conversion of single water molecules trapped inside closed fullerene cages. The existence of metastable ortho-water molecules is demonstrated, and the interconversion of ortho-and para-water spin isomers is tracked in real time. Our investigation reveals that the ground state of encapsulated ortho water has a lifted degeneracy, associated with symmetry-breaking of the water environment.


Nature Chemistry | 2016

The dipolar endofullerene HF@C60

Andrea Krachmalnicoff; Richard Bounds; Salvatore Mamone; Shamim Alom; Maria Concistrè; Benno Meier; Karel Kouřil; Mark E. Light; Mark R. Johnson; S. Rols; A.J. Horsewill; Anna Shugai; Urmas Nagel; Toomas Room; Marina Carravetta; Malcolm H. Levitt; Richard J. Whitby

The cavity inside fullerenes provides a unique environment for the study of isolated atoms and molecules. We report the encapsulation of hydrogen fluoride inside C60 using molecular surgery to give the endohedral fullerene HF@C60. The key synthetic step is the closure of the open fullerene cage with the escape of HF minimized. The encapsulated HF molecule moves freely inside the cage and exhibits quantization of its translational and rotational degrees of freedom, as revealed by inelastic neutron scattering and infrared spectroscopy. The rotational and vibrational constants of the encapsulated HF molecules were found to be redshifted relative to free HF. The NMR spectra display a large (1)H-(19)F J coupling typical of an isolated species. The dipole moment of HF@C60 was estimated from the temperature dependence of the dielectric constant at cryogenic temperatures and showed that the cage shields around 75% of the HF dipole.


Journal of Magnetic Resonance | 2009

Supercycled homonuclear dipolar decoupling sequences in solid-state NMR

Subhradip Paul; Rajendra Singh Thakur; Mithun Goswami; Andrea C. Sauerwein; Salvatore Mamone; Maria Concistrè; Hans Förster; Malcolm H. Levitt; P.K. Madhu

We compare the performance of the windowed phase-modulated Lee-Goldburg (wPMLG) and the windowed decoupling using mind boggling optimisation (wDUMBO) sequences at various magic-angle spinning rates and nutation frequencies of the pulses. Additionally, we introduce a supercycled version of wDUMBO and compare its efficiency with that of the non-supercycled implementation of wDUMBO. The efficiency of the supercycled version of wPMLG, denoted wPMLG-S2, is compared with a new supercycled version of wPMLG that we notate as wPMLG-S3. The interaction between the supercycled homonuclear dipolar decoupling sequences and the sample rotation is analysed using symmetry-based selection rules.


Journal of the American Chemical Society | 2008

Double-Quantum 13C Nuclear Magnetic Resonance of Bathorhodopsin, the First Photointermediate in Mammalian Vision

Maria Concistrè; Axel Gansmüller; Neville McLean; Ole G. Johannessen; Ildefonso Marin Montesinos; Petra H. M. Bovee-Geurts; Peter Verdegem; Johan Lugtenburg; Richard C. D. Brown; Willem J. DeGrip; Malcolm H. Levitt

The 13C chemical shifts of the primary visual photointermediate bathorhodopsin have been observed by performing double-quantum magic-angle-spinning NMR at low temperature in the presence of illumination. Strong isomerization shifts have been observed upon the conversion of rhodopsin into bathorhodopsin.


Accounts of Chemical Research | 2013

Magic-angle spinning NMR of cold samples.

Maria Concistrè; Ole G. Johannessen; Elisa Carignani; Marco Geppi; Malcolm H. Levitt

Magic-angle-spinning solid-state NMR provides site-resolved structural and chemical information about molecules that complements many other physical techniques. Recent technical advances have made it possible to perform magic-angle-spinning NMR experiments at low temperatures, allowing researchers to trap reaction intermediates and to perform site-resolved studies of low-temperature physical phenomena such as quantum rotations, quantum tunneling, ortho-para conversion between spin isomers, and superconductivity. In examining biological molecules, the improved sensitivity provided by cryogenic NMR facilitates the study of protein assembly or membrane proteins. The combination of low-temperatures with dynamic nuclear polarization has the potential to boost sensitivity even further. Many research groups, including ours, have addressed the technical challenges and developed hardware for magic-angle-spinning of samples cooled down to a few tens of degrees Kelvin. In this Account, we briefly describe these hardware developments and review several recent activities of our group which involve low-temperature magic-angle-spinning NMR. Low-temperature operation allows us to trap intermediates that cannot be studied under ambient conditions by NMR because of their short lifetime. We have used low-temperature NMR to study the electronic structure of bathorhodopsin, the primary photoproduct of the light-sensitive membrane protein, rhodopsin. This project used a custom-built NMR probe that allows low-temperature NMR in the presence of illumination (the image shows the illuminated spinner module). We have also used this technique to study the behavior of molecules within a restricted environment. Small-molecule endofullerenes are interesting molecular systems in which molecular rotors are confined to a well-insulated, well-defined, and highly symmetric environment. We discuss how cryogenic solid state NMR can give information on the dynamics of ortho-water confined in a fullerene cage. Molecular motions are often connected with fundamental chemical properties; therefore, an understanding of molecular dynamics can be important in fields ranging from material science to biochemistry. We present the case of ibuprofen sodium salt which exhibits different degrees of conformational freedom in different parts of the same molecule, leading to a range of line broadening and line narrowing phenomena as a function of temperature.


Journal of Chemical Physics | 2014

Nuclear spin conversion of water inside fullerene cages detected by low-temperature nuclear magnetic resonance

Salvatore Mamone; Maria Concistrè; Elisa Carignani; Benno Meier; Andrea Krachmalnicoff; Ole G. Johannessen; Xuegong Lei; Yongjun Li; Mark Denning; Marina Carravetta; Kelvin S. K. Goh; A.J. Horsewill; Richard J. Whitby; Malcolm H. Levitt

The water-endofullerene H2O@C60 provides a unique chemical system in which freely rotating water molecules are confined inside homogeneous and symmetrical carbon cages. The spin conversion between the ortho and para species of the endohedral H2O was studied in the solid phase by low-temperature nuclear magnetic resonance. The experimental data are consistent with a second-order kinetics, indicating a bimolecular spin conversion process. Numerical simulations suggest the simultaneous presence of a spin diffusion process allowing neighbouring ortho and para molecules to exchange their angular momenta. Cross-polarization experiments found no evidence that the spin conversion of the endohedral H2O molecules is catalysed by (13)C nuclei present in the cages.


Journal of Magnetic Resonance | 2011

An NMR thermometer for cryogenic magic-angle spinning NMR: the spin-lattice relaxation of 127I in cesium iodide

Riddhiman Sarkar; Maria Concistrè; Ole G. Johannessen; Peter Beckett; Mark Denning; Marina Carravetta; M.K. Al-Mosawi; C. Beduz; Y. Yang; Malcolm H. Levitt

The accurate temperature measurement of solid samples under magic-angle spinning (MAS) is difficult in the cryogenic regime. It has been demonstrated by Thurber et al. (J. Magn. Reson., 196 (2009) 84-87) [10] that the temperature dependent spin-lattice relaxation time constant of (79)Br in KBr powder can be useful for measuring sample temperature under MAS over a wide temperature range (20-296 K). However the value of T(1) exceeds 3 min at temperatures below 20K, which is inconveniently long. In this communication, we show that the spin-lattice relaxation time constant of (127)I in CsI powder can be used to accurately measure sample temperature under MAS within a reasonable experimental time down to 10 K.


Nature Communications | 2015

Electrical detection of ortho-para conversion in fullerene-encapsulated water

Benno Meier; Salvatore Mamone; Maria Concistrè; Javier Alonso-Valdesueiro; Andrea Krachmalnicoff; Richard J. Whitby; Malcolm H. Levitt

Water exists in two spin isomers, ortho and para, that have different nuclear spin states. In bulk water, rapid proton exchange and hindered molecular rotation obscure the direct observation of two spin isomers. The supramolecular endofullerene H2O@C60 provides freely rotating, isolated water molecules even at cryogenic temperatures. Here we show that the bulk dielectric constant of this substance depends on the ortho/para ratio, and changes slowly in time after a sudden temperature jump, due to nuclear spin conversion. The attribution of the effect to ortho–para conversion is validated by comparison with nuclear magnetic resonance and quantum theory. The change in dielectric constant is consistent with an electric dipole moment of 0.51±0.05 Debye for an encapsulated water molecule, indicating the partial shielding of the water dipole by the encapsulating cage. The dependence of bulk dielectric constant on nuclear spin isomer composition appears to be a previously unreported physical phenomenon.


Journal of Magnetic Resonance | 2013

Grid-free powder averages: On the applications of the Fokker-Planck equation to solid state NMR

Luke J. Edwards; Dmitry V. Savostyanov; Alexander A. Nevzorov; Maria Concistrè; Giuseppe Pileio; Ilya Kuprov

We demonstrate that Fokker-Planck equations in which spatial coordinates are treated on the same conceptual level as spin coordinates yield a convenient formalism for treating magic angle spinning NMR experiments. In particular, time dependence disappears from the background Hamiltonian (sample spinning is treated as an interaction), spherical quadrature grids are avoided completely (coordinate distributions are a part of the formalism) and relaxation theory with any linear diffusion operator is easily adopted from the Stochastic Liouville Equation theory. The proposed formalism contains Floquet theory as a special case. The elimination of the spherical averaging grid comes at the cost of increased matrix dimensions, but we show that this can be mitigated by the use of state space restriction and tensor train techniques. It is also demonstrated that low correlation order basis sets apparently give accurate answers in powder-averaged MAS simulations, meaning that polynomially scaling simulation algorithms do exist for a large class of solid state NMR experiments.


Biochimica et Biophysica Acta | 2009

Towards an interpretation of 13C chemical shifts in bathorhodopsin, a functional intermediate of a G-protein coupled receptor.

Axel Gansmüller; Maria Concistrè; Neville McLean; Ole G. Johannessen; Ildefonso Marin-Montesinos; Petra H. M. Bovee-Geurts; Peter Verdegem; Johan Lugtenburg; Richard C. D. Brown; Willem J. DeGrip; Malcolm H. Levitt

Photoisomerization of the membrane-bound light receptor protein rhodopsin leads to an energy-rich photostate called bathorhodopsin, which may be trapped at temperatures of 120 K or lower. We recently studied bathorhodopsin by low-temperature solid-state NMR, using in situ illumination of the sample in a purpose-built NMR probe. In this way we acquired (13)C chemical shifts along the retinylidene chain of the chromophore. Here we compare these results with the chemical shifts of the dark state chromophore in rhodopsin, as well as with the chemical shifts of retinylidene model compounds in solution. An earlier solid-state NMR study of bathorhodopsin found only small changes in the (13)C chemical shifts upon isomerization, suggesting only minor perturbations of the electronic structure in the isomerized retinylidene chain. This is at variance with our recent measurements which show much larger perturbations of the (13)C chemical shifts. Here we present a tentative interpretation of our NMR results involving an increased charge delocalization inside the polyene chain of the bathorhodopsin chromophore. Our results suggest that the bathochromic shift of bathorhodopsin is due to modified electrostatic interactions between the chromophore and the binding pocket, whereas both electrostatic interactions and torsional strain are involved in the energy storage mechanism of bathorhodopsin.

Collaboration


Dive into the Maria Concistrè's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giuseppe Pileio

University of Southampton

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Neville McLean

University of Southampton

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark Denning

University of Southampton

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge