Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marina Carravetta is active.

Publication


Featured researches published by Marina Carravetta.


Journal of Chemical Physics | 2005

Theory of long-lived nuclear spin states in solution nuclear magnetic resonance. I. Singlet states in low magnetic field.

Marina Carravetta; Malcolm H. Levitt

We have recently demonstrated the existence of exceptionally long-lived nuclear spin states in solution-state nuclear magnetic resonance. The lifetime of nuclear spin singlet states in systems containing coupled pairs of spins-12 may exceed the conventional relaxation time constant T1 by more than an order of magnitude. These long lifetimes may be observed if the long-lived singlet states are prevented from mixing with rapidly relaxing triplet states. In this paper we provide the detailed theory of an experiment which uses magnetic field cycling to observe slow singlet relaxation. An approximate expression is given for the magnetic field dependence of the singlet relaxation rate constant, using a model of intramolecular dipole-dipole couplings and fluctuating external random fields.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Storage of nuclear magnetization as long-lived singlet order in low magnetic field

Giuseppe Pileio; Marina Carravetta; Malcolm H. Levitt

Hyperpolarized nuclear states provide NMR signals enhanced by many orders of magnitude, with numerous potential applications to analytical NMR, in vivo NMR, and NMR imaging. However, the lifetime of hyperpolarized magnetization is normally limited by the relaxation time constant T1, which lies in the range of milliseconds to minutes, apart from in exceptional cases. In many cases, the lifetime of the hyperpolarized state may be enhanced by converting the magnetization into nuclear singlet order, where it is protected against many common relaxation mechanisms. However, all current methods for converting magnetization into singlet order require the use of a high-field, high-homogeneity NMR magnet, which is incompatible with most hyperpolarization procedures. We demonstrate a new method for converting magnetization into singlet order and back again. The new technique is suitable for magnetically inequivalent spin-pair systems in weak and inhomogeneous magnetic fields, and is compatible with known hyperpolarization technology. The method involves audio-frequency pulsed irradiation at the low-field nuclear Larmor frequency, employing coupling-synchronized trains of 180° pulses to induce singlet–triplet transitions. The echo trains are used as building blocks for a pulse sequence called M2S that transforms longitudinal magnetization into long-lived singlet order. The time-reverse of the pulse sequence, called S2M, converts singlet order back into longitudinal magnetization. The method is demonstrated on a solution of 15N-labeled nitrous oxide. The magnetization is stored in low magnetic field for over 30 min, even though the T1 is less than 3 min under the same conditions.


Journal of the American Chemical Society | 2008

The Long-Lived Nuclear Singlet State of 15N-Nitrous Oxide in Solution

Giuseppe Pileio; Marina Carravetta; Eric Hughes; Malcolm H. Levitt

A 15N nuclear singlet lifetime of over 26 min has been observed in a solution of 15N2O, by using a field-cycling NMR pulse sequence. This observation suggests applications of hyperpolarized 15N2O in medical imaging and for flow and diffusion studies.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Quantum rotation of ortho and para-water encapsulated in a fullerene cage

C. Beduz; Marina Carravetta; Judy Y.-C. Chen; Maria Concistrè; Mark Denning; Michael Frunzi; A.J. Horsewill; Ole G. Johannessen; Ronald G. Lawler; Xuegong Lei; Malcolm H. Levitt; Yongjun Li; Salvatore Mamone; Yasujiro Murata; Urmas Nagel; Tomoko Nishida; Jacques Ollivier; S. Rols; Toomas Room; Riddhiman Sarkar; Nicholas J. Turro; Y. Yang

Inelastic neutron scattering, far-infrared spectroscopy, and cryogenic nuclear magnetic resonance are used to investigate the quantized rotation and ortho–para conversion of single water molecules trapped inside closed fullerene cages. The existence of metastable ortho-water molecules is demonstrated, and the interconversion of ortho-and para-water spin isomers is tracked in real time. Our investigation reveals that the ground state of encapsulated ortho water has a lifted degeneracy, associated with symmetry-breaking of the water environment.


Journal of Chemical Physics | 2009

Rotor in a cage: infrared spectroscopy of an endohedral hydrogen-fullerene complex

Salvatore Mamone; Min Ge; D. Hüvonen; Urmas Nagel; A. Danquigny; F. Cuda; Martin C. Grossel; Yasujiro Murata; Koichi Komatsu; Malcolm H. Levitt; T. Rõõm; Marina Carravetta

We report the observation of quantized translational and rotational motion of molecular hydrogen inside the cages of C(60). Narrow infrared absorption lines at the temperature of 6 K correspond to vibrational excitations in combination with translational and rotational excitations and show well-resolved splittings due to the coupling between translational and rotational modes of the endohedral H(2) molecule. A theoretical model shows that H(2) inside C(60) is a three-dimensional quantum rotor moving in a nearly spherical potential. The theory provides both the frequencies and the intensities of the observed infrared transitions. Good agreement with the experimental results is obtained by fitting a small number of empirical parameters to describe the confining potential, as well as the relative concentration of ortho- and para-H(2).


Journal of Chemical Physics | 2006

Theory and applications of supercycled symmetry-based recoupling sequences in solid-state nuclear magnetic resonance

Per Eugen Kristiansen; Marina Carravetta; Jacco D. van Beek; Wai Cheu Lai; Malcolm H. Levitt

We present the theoretical principles of supercycled symmetry-based recoupling sequences in solid-state magic-angle-spinning NMR. We discuss the construction procedure of the SR26 pulse sequence, which is a particularly robust sequence for double-quantum homonuclear dipole-dipole recoupling. The supercycle removes destructive higher-order average Hamiltonian terms and renders the sequence robust over long time intervals. We demonstrate applications of the SR26 sequence to double-quantum spectroscopy, homonuclear spin counting, and determination of the relative orientations of chemical shift anisotropy tensors.


Journal of Chemical Physics | 2011

Interaction potential and infrared absorption of endohedral H2 in C60

Min Ge; Urmas Nagel; D. Hüvonen; Toomas Room; Salvatore Mamone; Malcolm H. Levitt; Marina Carravetta; Yasujiro Murata; Koichi Komatsu; Judy Y.-C. Chen; Nicholas J. Turro

We have measured the temperature dependence of the infrared spectra of a hydrogen molecule trapped inside a C(60) cage, H(2)@C(60), in the temperature range from 6 to 300 K and analyzed the excitation spectrum by using a five-dimensional model of a vibrating rotor in a spherical potential. The electric dipole moment is induced by the translational motion of endohedral H(2) and gives rise to an infrared absorption process where one translational quantum is created or annihilated, ΔN = ±1. Some fundamental transitions, ΔN = 0, are observed as well. The rotation of endohedral H(2) is unhindered but coupled to the translational motion. The isotropic and translation-rotation coupling part of the potential are anharmonic and different in the ground and excited vibrational states of H(2). The vibrational frequency and the rotational constant of endohedral H(2) are smaller than those of H(2) in the gas phase. The assignment of lines to ortho- and para-H(2) is confirmed by measuring spectra of a para enriched sample of H(2)@C(60) and is consistent with the earlier interpretation of the low temperature infrared spectra [Mamone et al., J. Chem. Phys. 130, 081103 (2009)].


Journal of Chemical Physics | 2006

Cryogenic NMR spectroscopy of endohedral hydrogen-fullerene complexes

Marina Carravetta; Ole G. Johannessen; Malcolm H. Levitt; Ivo Heinmaa; Raivo Stern; Ago Samoson; A.J. Horsewill; Yasujiro Murata; Koichi Komatsu

We have observed 1H NMR spectra of hydrogen molecules trapped inside modified fullerene cages under cryogenic conditions. Experiments on static samples were performed at sample temperatures down to 4.3 K, while magic-angle-spinning (MAS) experiments were performed at temperatures down to 20 K at spinning frequencies of 15 kHz. Both types of NMR spectra show a large increase in the intramolecular 1H-1H dipolar coupling at temperatures below 50 K, revealing thermal selection of a small number of spatial rotational states. The static and MAS spectra were compared to estimate the degree of sample heating in high-speed cryogenic MAS-NMR experiments. The cryogenic MAS-NMR data show that the site resolution of magic-angle-spinning NMR may be combined with the high signal strength of cryogenic operation and that cryogenic phenomena may be studied with chemical site selectivity.


Nature Chemistry | 2016

The dipolar endofullerene HF@C60

Andrea Krachmalnicoff; Richard Bounds; Salvatore Mamone; Shamim Alom; Maria Concistrè; Benno Meier; Karel Kouřil; Mark E. Light; Mark R. Johnson; S. Rols; A.J. Horsewill; Anna Shugai; Urmas Nagel; Toomas Room; Marina Carravetta; Malcolm H. Levitt; Richard J. Whitby

The cavity inside fullerenes provides a unique environment for the study of isolated atoms and molecules. We report the encapsulation of hydrogen fluoride inside C60 using molecular surgery to give the endohedral fullerene HF@C60. The key synthetic step is the closure of the open fullerene cage with the escape of HF minimized. The encapsulated HF molecule moves freely inside the cage and exhibits quantization of its translational and rotational degrees of freedom, as revealed by inelastic neutron scattering and infrared spectroscopy. The rotational and vibrational constants of the encapsulated HF molecules were found to be redshifted relative to free HF. The NMR spectra display a large (1)H-(19)F J coupling typical of an isolated species. The dipole moment of HF@C60 was estimated from the temperature dependence of the dielectric constant at cryogenic temperatures and showed that the cage shields around 75% of the HF dipole.


Journal of Chemical Physics | 2011

Infrared spectroscopy of endohedral HD and D2 in C60

Min Ge; Urmas Nagel; D. Hüvonen; Toomas Room; Salvatore Mamone; Malcolm H. Levitt; Marina Carravetta; Yasujiro Murata; Koichi Komatsu; Xuegong Lei; Nicholas J. Turro

We report on the dynamics of two hydrogen isotopomers, D(2) and HD, trapped in the molecular cages of a fullerene C(60) molecule. We measured the infrared spectra and analyzed them using a spherical potential for a vibrating rotor. The potential, vibration-rotation Hamiltonian, and dipole moment parameters are compared with previously studied H(2)@C(60) parameters [M. Ge, U. Nagel, D. Hüvonen, T. Rõõm, S. Mamone, M. H. Levitt, M. Carravetta, Y. Murata, K. Komatsu, J. Y.-C. Chen, and N. J. Turro, J. Chem. Phys. 134, 054507 (2011)]. The isotropic part of the potential is similar for all three isotopomers. In HD@C(60), we observe mixing of the rotational states and an interference effect of the dipole moment terms due to the displacement of the HD rotation center from the fullerene cage center.

Collaboration


Dive into the Marina Carravetta's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A.J. Horsewill

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark Denning

University of Southampton

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge