Maria Cristina Guerra
Universidade Federal do Rio Grande do Sul
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maria Cristina Guerra.
Journal of Neuroscience Methods | 2008
Marina Concli Leite; Fabiana Galland; Giovana Brolese; Maria Cristina Guerra; Josiane Woutheres Bortolotto; Rodrigo Freitas; Lúcia Maria Vieira de Almeida; Carmem Gottfried; Carlos Alberto Saraiva Goncalves
S100B expression, particularly extracellular S100B, is used as a parameter of glial activation and/or death in several situations of brain injury. Several immunoassays for S100B measurement are available, which differ with regard to specificity, sensitivity, sample application, and, of course, economic costs. We standardized two protocols for S100B measurement (range between 1.9pg and 10ng/mL) in human and rat samples from brain and adipose tissues, blood serum, cerebrospinal fluid, urine and cell culture. Abundance and secretion of this protein in adipose tissue reinforces the caution about its origin in blood serum. Interestingly, S100B recognition was affected by the redox status of the protein. This aspect should be considered in S100B measurement, assuming that oxidized and reduced forms possibly coexist in vivo and the equilibrium can be modified by oxidative stress of physiological or pathological conditions or even by obtaining sample conditions.
Cardiovascular Psychiatry and Neurology | 2010
Carlos Alberto Saraiva Goncalves; Marina Concli Leite; Maria Cristina Guerra
Adipocytes contain high levels of S100B and in vitro assays indicate a modulated secretion of this protein by hormones that regulate lipolysis, such as glucagon, adrenaline, and insulin. A connection between lipolysis and S100B release has been proposed but definitive evidence is lacking. Although the biological significance of extracellular S100B from adipose tissue is still unclear, it is likely that this tissue might be an important source of serum S100B in situations related, or not, to brain damage. Current knowledge does not preclude the use of this protein in serum as a marker of brain injury or astroglial activation, but caution is recommended when discussing the significance of changes in serum levels where S100B may function as an adipokine, a neurotrophic cytokine, or an alarmin.
PLOS ONE | 2012
Larissa Daniele Bobermin; André Quincozes-Santos; Maria Cristina Guerra; Marina Concli Leite; Diogo O. Souza; Carlos-Alberto Gonçalves; Carmem Gottfried
Ammonia is implicated as a neurotoxin in brain metabolic disorders associated with hyperammonemia. Acute ammonia toxicity can be mediated by an excitotoxic mechanism, oxidative stress and nitric oxide (NO) production. Astrocytes interact with neurons, providing metabolic support and protecting against oxidative stress and excitotoxicity. Astrocytes also convert excess ammonia and glutamate into glutamine via glutamine synthetase (GS). Resveratrol, a polyphenol found in grapes and red wines, exhibits antioxidant and anti-inflammatory properties and modulates glial functions, such as glutamate metabolism. We investigated the effect of resveratrol on the production of reactive oxygen species (ROS), GS activity, S100B secretion, TNF-α, IL-1β and IL-6 levels in astroglial cells exposed to ammonia. Ammonia induced oxidative stress, decreased GS activity and increased cytokines release, probably by a mechanism dependent on protein kinase A (PKA) and extracellular signal-regulated kinase (ERK) pathways. Resveratrol prevented ammonia toxicity by modulating oxidative stress, glial and inflammatory responses. The ERK and nuclear factor-κB (NF-κB) are involved in the protective effect of resveratrol on cytokines proinflammatory release. In contrast, other antioxidants (e.g., ascorbic acid and trolox) were not effective against hyperammonemia. Thus, resveratrol could be used to protect against ammonia-induced neurotoxicity.
Journal of Neuroinflammation | 2011
Maria Cristina Guerra; Lucas Silva Tortorelli; Fabiana Galland; Carollina Da Ré; Elisa Negri; Douglas Senna Engelke; Letícia Rodrigues; Marina Concli Leite; Carlos-Alberto Gonçalves
BackgroundInflammatory responses in brain are primarily mediated by microglia, but growing evidence suggests a crucial importance of astrocytes. S100B, a calcium-binding protein secreted by astrocytes, has properties of a neurotrophic or an inflammatory cytokine. However, it is not known whether primary signals occurring during induction of an inflammatory response (e.g. lipopolysaccharide, LPS) directly modulate S100B.MethodsIn this work, we evaluated whether S100B levels in cerebrospinal fluid (CSF) and serum of Wistar rats are affected by LPS administered by intraperitoneal (IP) or intracerebroventricular (ICV) injection, as well as whether primary astrocyte cultures respond directly to lipopolysaccharide.ResultsOur data suggest that S100B secretion in brain tissue is stimulated rapidly and persistently (for at least 24 h) by ICV LPS administration. This increase in CSF S100B was transient when LPS was IP administered. In contrast to these S100B results, we observed an increase in in TNFα levels in serum, but not in CSF, after IP administration of LPS. In isolated astrocytes and in acute hippocampal slices, we observed a direct stimulation of S100B secretion by LPS at a concentration of 10 μg/mL. An involvement of TLR4 was confirmed by use of specific inhibitors. However, lower levels of LPS in astrocyte cultures were able to induce a decrease in S100B secretion after 24 h, without significant change in intracellular content of S100B. In addition, after 24 h exposure to LPS, we observed a decrease in astrocytic glutathione and an increase in astrocytic glial fibrillary acidic protein.ConclusionsTogether, these data contribute to the understanding of the effects of LPS on astrocytes, particularly on S100B secretion, and help us to interpret cerebrospinal fluid and serum changes for this protein in neuroinflammatory diseases. Moreover, non-brain S100B-expressing tissues may be differentially regulated, since LPS administration did not lead to increased serum levels of S100B.
Journal of Neuroscience Research | 2009
Marina Concli Leite; Fabiana Galland; Daniela Fraga de Souza; Maria Cristina Guerra; Larissa Daniele Bobermin; Regina Biasibetti; Carmem Gottfried; Carlos-Alberto Gonçalves
Astrocytes sense, integrate, and respond to stimuli generated by neurons or neural injury; this response involves gap junction (GJ) communication. Neuronal vulnerability to injury increased when cocultures of astrocytes and neurons were exposed to GJ inhibitors. However, GJ uncoupling could limit the extension of a lesion. We investigated a possible link between GJ communication and S100B secretion. S100B is a calcium‐binding protein of 21 kDa that is predominantly expressed and secreted by astrocytes, which has trophic paracrine activity on neurite growth, glial proliferation, and neuronal survival. GJ inhibitors were analyzed in isolated astrocytes in primary cultures from hippocampus, acute hippocampal slices, and C6 glioma cells, which were used as a negative control. Our data indicate that GJ blocking stimulates S100B secretion in astrocyte cultures and acute hippocampal slices. Different assays were used to confirm cell integrity during exposure to GJ inhibitors. S100B secretion was observed with different types of GJ inhibitors; the resulting event was dependent on time, the nature of the inhibitor, its putative molecular target of GJ blocking, and/or the cell preparation used. Only carbenoxolone induced a fast and persistent increase in S100B secretion in both preparations. Endothelin‐1 increased S100B secretion in astrocyte cultures at 1 hr, but a decrease was observed at 6 hr or in acute hippocampal slices. Physiologically, a local GJ closure associated with release of S100B in injury conditions favors the idea of a common mechanism available to limit the extension of lesion and increase the chances of cell survival.
Progress in Neuro-psychopharmacology & Biological Psychiatry | 2013
Daniela Fraga de Souza; Krista Minéia Wartchow; Fernanda Hansen; Paula Lunardi; Maria Cristina Guerra; Patrícia Nardin; Carlos-Alberto Gonçalves
Although inflammation may be a physiological defense process, imbalanced neuroinflammation has been associated with the pathophysiology of brain disorders, including major depression and schizophrenia. Activated glia releases a variety of pro-inflammatory cytokines that contribute to neuronal dysfunction. Elevated levels of S100B, a glia derived protein, have been observed in the serum and CSF of schizophrenic patients suggesting a glial role in the disease. We evaluated whether S100B secretion (in C6 glioma cells and hippocampal slices in Wistar rats) could be directly modulated by the main inflammatory cytokines (IL-1β, TNF-α, IL-6 and IL-8) altered in schizophrenia, as well as the possible involvement of mitogen-activated protein kinase (MAPK) pathways in these responses. We also investigated the effects of typical and atypical antipsychotic drugs on glial cytokine-induced S100B release. Our results suggest that S100B secretion is increased by pro-inflammatory cytokines via MAPK and that oxidative stress may be a component of this modulation. These results reinforce the idea that the S100B protein is involved in the inflammatory response observed in many brain diseases, including schizophrenia. Moreover the antipsychotics, haloperidol and risperidone, were able to inhibit the secretion of S100B following IL-6 stimulation in C6 glioma cells.
Life Sciences | 2013
Adriana Vizuete; Daniela Fraga de Souza; Maria Cristina Guerra; Cristiane Batassini; Márcio Ferreira Dutra; Caren Luciane Bernardi; Ana Paula O. Costa; Carlos-Alberto Gonçalves
AIMS We investigated the effects of ketogenic diet (KD) on levels of tumor necrosis factor alpha (TNF-α, a classical pro-inflammatory cytokine), BDNF (brain-derived neurotrophic factor, commonly associated with synaptic plasticity), and S100B, an astrocyte neurotrophic cytokine involved in metabolism regulation. MAIN METHODS Young Wistar rats were fed during 8weeks with control diet or two KD, containing different proportions of omega 6 and omega 3 polyunsaturated fatty acids. Contents of TNF-α, BDNF and S100B were measured by ELISA in two brain regions (hippocampus and striatum) as well as blood serum and cerebrospinal fluid. KEY FINDINGS Our data suggest that KD was able to reduce the levels of BDNF in the striatum (but not in hippocampus) and S100B in the cerebrospinal fluid of rats. These alterations were not affected by the proportion of polyunsaturated fatty acids offered. No changes in S100B content were observed in serum or analyzed brain regions. Basal TNF-α content was not affected by KD. SIGNIFICANCE These findings reinforce the importance of this diet as an inductor of alterations in the brain, and such changes might contribute to the understanding of the effects (and side effects) of KD in brain disorders.
Life Sciences | 2013
Paula Lunardi; Patrícia Nardin; Maria Cristina Guerra; Renata Torres Abib; Marina Concli Leite; Carlos-Alberto Gonçalves
AIMS The loss of cholinergic function in the central nervous system contributes significantly to the cognitive decline associated with advanced age and dementias. Huperzine A (HupA) is a selective inhibitor of acetylcholinesterase (AChE) and has been shown to significantly reduce cognitive impairment in animal models of dementia. Based on the importance of astrocytes in physiological and pathological brain activities, we investigated the effect of HupA and tacrine on S100B secretion in primary astrocyte cultures. S100B is an astrocyte-derived protein that has been proposed to be a marker of brain injury. MAIN METHODS Primary astrocyte cultures were exposed to HupA, tacrine, cholinergic agonists, and S100B secretion was measured by enzyme-linked immunosorbent assay (ELISA) at 1 and 24h. KEY FINDINGS HupA, but not tacrine, at 100μM significantly increased S100B secretion in astrocyte cultures. Nicotine (at 100 and 1000μM) was able to stimulate S100B secretion in astrocyte cultures. SIGNIFICANCE Our data reinforce the idea that AChE inhibitors, particularly HupA, do not act exclusively on the acetylcholine balance. This effect of HupA could contribute to improve the cognitive deficit observed in patients, which are attributed to cholinergic dysfunction. In addition, for the first time, to our knowledge, these data indicate that S100B secretion can be modulated by nicotinic receptors, in addition to glutamate, dopamine and serotonin receptors.
Planta Medica | 2014
Lionel Sacconnay; Lucie Ryckewaert; Carolina dos Santos Passos; Maria Cristina Guerra; Lucilia Kato; Cecília Maria Alves de Oliveira; Amelia Teresinha Henriques; Pierre-Alain Carrupt; Claudia Simões-Pires; Alessandra Nurisso
Epigenetic enzymes such as histone deacetylases play a crucial role in the development of ageing-related diseases. Among the 18 histone deacetylase isoforms found in humans, class III histone deacetylases, also known as sirtuins, seem to be promising targets for treating neurodegenerative conditions. Recently, Psychotria alkaloids, mainly monoterpene indoles, have been reported for their inhibitory properties against central nervous system cholinesterase and monoamine oxidase proteins. Given the multifunctional profile of these alkaloids in the central nervous system, and the fact that the indole scaffold has been previously associated with sirtuin inhibition, we hypothesized that these indole derivatives could also interact with sirtuins. In the present study, alkaloids previously isolated from Psychotria spp. were evaluated for their potential interaction with human sirtuin 1 and sirtuin 2 by molecular docking and molecular dynamics simulation approaches. The in silico results allowed for the selection of five potentially active compounds, namely, prunifoleine, 14-oxoprunifoleine, E-vallesiachotamine, Z-vallesiachotamine, and vallesiachotamine lactone. The sirtuin inhibition of these compounds was confirmed in vitro in a dose-response manner, with preliminary information on their pharmacokinetics properties.
Physiology & Behavior | 2016
Fernanda Hansen; Pablo Pandolfo; Fabiana Galland; Felipe Vasconcelos Torres; Márcio Ferreira Dutra; Cristiane Batassini; Maria Cristina Guerra; Marina Concli Leite; Carlos-Alberto Gonçalves
Diabetes is associated with loss of cognitive function and increased risk for Alzheimers disease (AD). Advanced glycation end products (AGEs) are elevated in diabetes and AD and have been suggested to act as mediators of the cognitive decline observed in these pathologies. Methylglyoxal (MG) is an extremely reactive carbonyl compound that propagates glycation reactions and is, therefore, able to generate AGEs. Herein, we evaluated persistent behavioral and biochemical parameters to explore the hypothesis that elevated exogenous MG concentrations, induced by intracerebroventricular (ICV) infusion, lead to cognitive decline in Wistar rats. A high and sustained administration of MG (3μmol/μL; subdivided into 6days) was found to decrease the recognition index of rats, as evaluated by the object-recognition test. However, MG was unable to impair learning-memory processes, as shown by the habituation in the open field (OF) and Y-maze tasks. Moreover, a single high dose of MG induced persistent alterations in anxiety-related behavior, diminishing the anxiety-like parameters evaluated in the OF test. Importantly, MG did not alter locomotion behavior in the different tasks performed. Our biochemical findings support the hypothesis that MG induces persistent alterations in the hippocampus, but not in the cortex, related to glyoxalase 1 activity, AGEs content and glutamate uptake. Glial fibrillary acidic protein and S100B content, as well as S100B secretion (astroglial-related parameters of brain injury), were not altered by ICV MG administration. Taken together, our data suggest that MG interferes directly in brain function and that the time and the levels of exogenous MG determine the different features that can be seen in diabetic patients.
Collaboration
Dive into the Maria Cristina Guerra's collaboration.
Carlos Alberto Saraiva Goncalves
Universidade Federal do Rio Grande do Sul
View shared research outputs