María Cruz Rodríguez
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by María Cruz Rodríguez.
International Journal of Antimicrobial Agents | 2008
Jesús Oteo; Alberto Delgado-Iribarren; Dolores Vega; Verónica Bautista; María Cruz Rodríguez; María Velasco; Saavedra Jm; María Pérez-Vázquez; Silvia García-Cobos; Luis Martínez-Martínez; José Campos
The molecular epidemiology and the mechanisms of resistance of Escherichia coli isolated from two patients infected by imipenem-resistant strains are reported in this study. From one patient, three closely related consecutive isolates of E. coli were recovered; the first was carbapenem-susceptible but acquired imipenem resistance after treatment with ertapenem, and the third isolate was again imipenem-susceptible. An additional imipenem-resistant isolate was recovered from another patient who received imipenem. The genetic relatedness of the E. coli isolates was determined by pulsed-field gel electrophoresis (PFGE) after digestion with XbaI. Standard polymerase chain reaction (PCR) conditions were used to amplify several beta-lactamase genes coding for carbapenemases, extended-spectrum beta-lactamases (ESBLs) and plasmid-mediated AmpC; the E. coli ampC gene promoter was also amplified and sequenced. Primers OmpF-F/OmpF-R and OmpC-F/OmpC-R were used to amplify the ompF and ompC genes. The outer membrane protein (OMP) profiles were studied by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). Imipenem-resistant E. coli isolates did not produce carbapenemases but lacked the two major OMPs OmpF and OmpC and had ampC promoter mutations; in addition, one of the imipenem-resistant isolates produced the CMY-2 cephalosporinase, whilst the other produced the new CTX-M-67 ESBL. Carbapenem resistance in this study was associated with lack of expression of OmpF and OmpC porins. Additional mechanisms of beta-lactam resistance, such as plasmid-mediated AmpC and ESBL production, were also found. Development of carbapenem resistance in a CTX-M-67-producing E. coli is first described in this study.
Infection and Immunity | 2007
Félix J. Sangari; Asunción Seoane; María Cruz Rodríguez; Jesús Agüero; Juan M. García Lobo
ABSTRACT Most members of the genus Brucella show strong urease activity. However, the role of this enzyme in the pathogenesis of Brucella infections is poorly understood. We isolated several Tn5 insertion mutants deficient in urease activity from Brucella abortus strain 2308. The mutations of most of these mutants mapped to a 5.7-kbp DNA region essential for urease activity. Sequencing of this region, designated ure1, revealed the presence of seven open reading frames corresponding to the urease structural proteins (UreA, UreB, and UreC) and the accessory proteins (UreD, UreE, UreF, and UreG). In addition to the urease genes, another gene (cobT) was identified, and inactivation of this gene affected urease activity in Brucella. Subsequent analysis of the previously described sequences of the genomes of Brucella spp. revealed the presence of a second urease cluster, ure2, in all them. The ure2 locus was apparently inactive in B. abortus 2308. Urease-deficient mutants were used to evaluate the role of urease in Brucella pathogenesis. The urease-producing strains were found to be resistant in vitro to strong acid conditions in the presence of urea, while urease-negative mutants were susceptible to acid treatment. Similarly, the urease-negative mutants were killed more efficiently than the urease-producing strains during transit through the stomach. These results suggested that urease protects brucellae during their passage through the stomach when the bacteria are acquired by the oral route, which is the major route of infection in human brucellosis.
PLOS ONE | 2010
Cristina Viadas; María Cruz Rodríguez; Félix J. Sangari; Jean Pierre Gorvel; Juan M. García-Lobo; Ignacio López-Goñi
Background The two-component BvrR/BvrS system is essential for Brucella abortus virulence. It was shown previously that its dysfunction alters the expression of some major outer membrane proteins and the pattern of lipid A acylation. To determine the genes regulated by BvrR/BvrS, we performed a whole-genome microarray analysis using B. abortus RNA obtained from wild type and bvrR mutant cells grown in the same conditions. Methodology/Principal Findings A total of 127 differentially expressed genes were found: 83 were over expressed and 44 were less expressed in the bvrR mutant. Two operons, the phosphotransferase system and the maltose transport system, were down-regulated. Several genes involved in cell envelope or outer membrane biogenesis were differentially expressed: genes for outer membrane proteins (omp25a, omp25d), lipoproteins, LPS and fatty acid biosynthesis, stress response proteins, chaperones, flagellar genes, and twelve genes encoding ABC transport systems. Ten genes related with carbon metabolism (pckA and fumB among others) were up-regulated in the bvrR mutant, and denitrification genes (nirK, norC and nosZ) were also regulated. Notably, seven transcriptional regulators were affected, including VjbR, ExoR and OmpR that were less expressed in the bvrR mutant. Finally, the expression of eleven genes which have been previously related with Brucella virulence was also altered. Conclusions/Significance All these data corroborate the impact of BvrR/BvrS on cell envelope modulation, confirm that this system controls the carbon and nitrogen metabolism, and suggest a cross-talk among some regulators to adjust the Brucella physiology to the shift expected to occur during the transit from the extracellular to the intracellular niche.
Molecular Psychiatry | 2013
Jesus Sainz; Ignacio Mata; Jorge Barrera; Rocío Pérez-Iglesias; Ignacio Varela; Maria Arranz; María Cruz Rodríguez; Benedicto Crespo-Facorro
Inflammatory and immune response genes have significantly altered expression in schizophrenia
Infection and Immunity | 2004
Violeta Fernandez-Santana; Félix Cardoso; A. Rodríguez; Tania Carmenate; Luis Peña; Yuri Valdés; Eugenio Hardy; Fatme Mawas; Lazaro Heynngnezz; María Cruz Rodríguez; Ignacio Figueroa; Janoi Chang; María Eugenia Toledo; Alexis Musacchio; Ibis Hernández; M. Izquierdo; Karelia Cosme; René Roy; Vicente Vérez-Bencomo
ABSTRACT Polysaccharide-protein conjugates as vaccines have proven to be very effective in preventing Haemophilus influenzae type b infections in industrialized countries. However, cost-effective technologies need to be developed for increasing the availability of anti-H. influenzae type b vaccines in countries from the developing world. Consequently, vaccine production with partially synthetic antigens is a desirable goal for many reasons. They may be rigidly controlled for purity and effectiveness while at the same time being cheap enough that they may be made universally available. We describe here the antigenicity and immunogenicity of several H. influenzae type b synthetic oligosaccharide-protein conjugates in laboratory animals. The serum of H. influenzae type b-immunized animals recognized our synthetic H. influenzae type b antigens to the same extent as the native bacterial capsular polysaccharide. Compared to the anti-H. influenzae type b vaccine employed, these synthetic versions induced similar antibody response patterns in terms of titer, specificity, and functional capacity. The further development of synthetic vaccines will meet urgent needs in the less prosperous parts of the world and remains our major goal.
Clinical and Vaccine Immunology | 2006
Gilda Toraño; María Eugenia Toledo; Alberto Baly; Violeta Fernandez-Santana; Francisco J. Rodriguez; Yunia Alvarez; Teresita Serrano; Alexis Musachio; Ibis Hernández; Eugenio Hardy; A. Rodríguez; Héctor J. Aguado Hernández; A. Aguilar; Raydel Sánchez; Manuel Diaz; Verena Muzio; Jorgelina Dfana; María Cruz Rodríguez; Lazaro Heynngnezz; Vicente Verez-Bencomo
ABSTRACT Since 1989, we have been involved in the development of a vaccine against Haemophilus influenzae type b. The new vaccine is based on the conjugation of synthetic oligosaccharides to tetanus toxoid. Our main goals have been (i) to verify the feasibility of using the synthetic antigen and (ii) to search for new production alternatives for this important infant vaccine. Overall, eight trials have already been conducted with adults, children (4 to 5 years old), and infants. We have described herein the details from the first two phase I clinical trials conducted with human adult volunteers under double blind, randomized conditions. The participants each received a single intramuscular injection to evaluate safety and initial immunogenicity. We have found an excellent safety profile and an antibody response similar to the one observed for the control vaccine.
Microbial Pathogenesis | 2009
Cristina Viadas; María Cruz Rodríguez; Juan M. García-Lobo; Félix J. Sangari; Ignacio López-Goñi
The genus Brucella contains bacteria producing a zoonosis of large sanitary and economical impact. The complete nucleotide sequence of eight Brucella isolates is currently available. This information can be used for high throughput approaches to the biology of this genus such as the construction of comprehensive collections of ORF clones or ORFeomes. The ORFeome of Brucella melitensis was a first contribution to this goal. Using the Brucella ORFeome as starting material we have amplified each ORF and printed them in duplicate onto coated glass slides along with the appropriate positive and negative controls. Quality control of the microarray was performed by image analysis after ethidium bromide staining. This Brucella DNA microarray was used to determine the global transcriptional profile of Brucella abortus grown under laboratory conditions. Two sets of genes representing strongly and poorly expressed genes have been defined. The occurrence of several genes of the same operon in the same data set has been taken as additional proof of the significance of the results. The two sets have been validated by RT-PCR of retrotranscribed RNA. Among the more abundant transcripts we found ribosomal proteins, Krebs cycle and oxidative phosphorylation enzymes. virB, flagellar components and other genes related with virulence and intracellular growth were in the poorly transcribed set. This report demonstrated the usefulness of the ORFeome for the construction of a PCR product microarray for the analysis of global gene expression in Brucella and also applicable to other microorganisms. The results provided here represent a comprehensive description of the global transcriptional profile of B. abortus grown under laboratory conditions and, at the same time, validate the use of this Brucella microarray for the study of the biology and pathogenesis of Brucella through the analysis of gene expression under any experimental conditions.
Clinical Microbiology and Infection | 2011
A. B. Campo Esquisabel; María Cruz Rodríguez; A. O. Campo-Sosa; Cristina Rodríguez; Luis Martínez-Martínez
The MIC of cefepime determined with the MicroScan WalkAway system was ≥2 times higher than that of ceftazidime for 105 clinical isolates of Pseudomonas aeruginosa. This phenotype was confirmed by reference microdilution in 68 (64.8%) isolates, corresponding to 48 different rep-PCR patterns. The PSE-1 blactamase was identified in only 13.2% isolates, while oxacillinases were not identified in any of the 68 isolates. The level of expression of mexB, mexD and mexY was determined by real-time RT-PCR in eight clinical isolates representative of the different clones and patterns of susceptibility to cefepime and ceftazidime and in strain PAO1. All clinical strains overexpressed the mexY gene (18.3- to 152.7-fold in comparison with PAO1), although there was not a linear relationship between MIC of cefepime and level of mexY expression. Five of these strains contained mutations in the regulatory gene mexZ. mexD and mexB were also overexpressed in three and two isolates, respectively. Different mutations were observed in the regulatory genes nalD, mexR, nfxB and nalC. In conclusion, we have documented in our institution a polyclonal spread of P. aeruginosa with higher MICs of cefepime than of ceftazidime, related to overexpression of MexXY-OprM, coincident in some isolates with the production of PSE-1, MexCD-OprJ or MexAB-OprM.
PLOS ONE | 2012
María Cruz Rodríguez; Cristina Viadas; Asunción Seoane; Félix J. Sangari; Ignacio López-Goñi; Juan M. García-Lobo
Bacteria of the genus Brucella have the unusual capability to catabolize erythritol and this property has been associated with their virulence mainly because of the presence of erythritol in bovine foetal tissues and because the attenuated S19 vaccine strain is the only Brucella strain unable to oxydize erythritol. In this work we have analyzed the transcriptional changes produced in Brucella by erythritol by means of two high throughput approaches: RNA hybridization against a microarray containing most of Brucella ORFs constructed from the Brucella ORFeome and next generation sequencing of Brucella mRNA in an Illumina GAIIx platform. The results obtained showed the overexpression of a group of genes, many of them in a single cluster around the ery operon, able to co-ordinately mediate the transport and degradation of erythritol into three carbon atoms intermediates that will be then converted into fructose-6P (F6P) by gluconeogenesis. Other induced genes participating in the nonoxidative branch of the pentose phosphate shunt and the TCA may collaborate with the ery genes to conform an efficient degradation of sugars by this route. On the other hand, several routes of amino acid and nucleotide biosynthesis are up-regulated whilst amino acid transport and catabolism genes are down-regulated. These results corroborate previous descriptions indicating that in the presence of erythritol, this sugar was used preferentially over other compounds and provides a neat explanation of the the reported stimulation of growth induced by erythritol.
Clinical Microbiology and Infection | 1997
José Manuel Gutiérrez; María Cruz Rodríguez; Piédrola G; Maroto Mc
Collaboration
Dive into the María Cruz Rodríguez's collaboration.
Centro de Investigación y Desarrollo Tecnológico en Electroquímica
View shared research outputs